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Tame combings, almost convexity and

rewriting systems for groups

1 Introduction

Several properties for finitely presented groups have been defined which can be

used to show that a closed P 2-irreducible three-manifold has universal cover

homeomorphic to R3. For example, work of Poénaru [P] shows that if the fun-

damental group is infinite and satisfies Cannon’s almost convexity property, then

the universal cover is simply connected at infinity, and hence is R3 (see [B-T]).

Casson later discovered the property C2, which regrettably is presentation de-

pendent, but which also implies that the universal cover is R3 [S-G]. Brick and

Mihalik generalized the condition C2 to the quasi-simply-filtered condition [B-

M], which is independent of presentation and also implies the covering property.

Later Mihalik and Tschantz [M-T] defined the notion of a tame 1-combing for

a finitely presented group, which implies the quasi-simply-filtered condition and

showed that asynchronously automatic groups and semihyperbolic groups are

tame 1-combable.

Using a fairly geometric argument we show that groups with finite complete

rewriting systems have tame 1-combings. Using similar techniques, we obtain

other geometric properties for groups with finite complete rewriting systems sat-

isfying more restrictive conditions. In particular, a group with a geodesic finite

complete rewriting system is almost convex. To finish this circle of ideas we also

show that a group which is almost convex for some generating set admits a tame

1-combing. These results establish the following implications:

GF =⇒ F

⇓ ⇓

AC =⇒ T

where GF and F denote the category of groups admitting geodesic finite com-

plete rewriting systems and groups admitting finite complete rewriting systems,

respectively; AC is the category of almost convex groups; and T is the category

of tame 1-combable groups.

General results about finite complete rewriting systems for fundamental

groups of three-manifolds are quite scarce. However, Hermiller and Shapiro [HS]

have observed the following theorem concerning three-manifolds which admit a

geometric structure. (See [Sc] for more information on these manifolds.)
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Theorem. (Hermiller, Shapiro) Suppose M is a closed three-manifold carrying

one of Thurston’s eight geometries. In the case that M is hyperbolic, make the

further assumption that M is finitely covered by a manifold which fibers over the

circle. Then π1(M) has a finite complete rewriting system.

(According to folklore, Thurston has conjectured that all closed hyperbolic 3-

manifolds obey this additional assumption.)

This result follows by combining results in [Sc] with theorems on closure

properties for the class of groups admitting finite complete rewriting systems in

[G-S1], [G-S2], along with a finite complete rewriting system for surface groups

([L] or [H]).

Any closed irreducible three-manifold satisfying Thurston’s geometrization

conjecture with infinite fundamental group has universal cover R3. So in these

cases the rewriting systems do not actually give additional information about the

covering conjecture. However, since there are computer programs available which

search for finite complete rewriting systems for groups, this technique of finding

rewriting systems provides a new method for checking the covering property for

any three-manifold.

Neither horizontal implication in the diagram above can be reversed. For

example, solvgroups admit finite complete rewriting systems but they are not

almost convex on any set of generators ([C+]). Therefore solvgroups are examples

of groups which have finite complete rewriting systems, but which do not have a

geodesic finite complete rewriting system on any generating set. (We note that

solvgroups are not contained in any of the categories studied in [M-T]; however,

since they do have rewriting systems they are tame 1-combable.)

Many rewriting systems that have been constructed for groups are geodesic

because the rules are compatible with a shortlex ordering on words in the gen-

erators of the group. Rewriting systems have also been constructed with rules

compatible with a weightlex ordering. Gersten [G2] has shown that a group which

is almost convex with respect to a finite generating set satisfies a linear isodiamet-

ric inequality and an exponential isoperimetric inequality. We show that these

inequalities are also satisfied by groups with rewriting systems compatible with

a weightlex ordering.

Thus we are able to build another diagram of implications. Below SF and

WF are the classes of groups admitting shortlex rewriting systems and weightlex

rewriting systems, respectively. We use LE to denote the class of groups with

linear isodiametric and exponential isoperimetric inequalities.
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SF =⇒ WF

⇓ ⇓

AC =⇒ LE

Gersten [G2] has shown that solvgroups satisfy a linear isodiametric inequal-

ity, and results in [B] and [E+] show that solvgroups satisfy an exponential isoperi-

metric inequality. So solvgroups are examples of groups which lie in LE but not

in AC. Regrettably, it is currently unclear which other implications cannot be

reversed in this diagram.

The connections between the two diagrams of implications is also unclear.

We note that there are groups admitting finite complete rewriting systems which

do not lie in LE . Gersten has shown that the group 〈x, y, z | xy = x2, yz = y2〉

does not satisfy a linear isodiametric inequality nor an exponential isoperimetric

inequality. (See [G1] and [G3] for more details.) Gersten also created the following

rewriting system for this group. (A capital letter denotes the inverse of the

generator.)

xX → 1 Xx → 1 yY → 1 Y y → 1

zZ → 1 Zz → 1

xy → Xyx xY → Y xx XXy → yX XY → Y XX

ZY → Y Zy zY → Y Y z Zyy → yZ zy → yyz

Building on Gersten’s work, with help from Brazil, we have established that this

rewriting system is complete. Consequently, this group is an example of a group

which admits a finite complete rewriting system but does not admit a weightlex

rewriting system.

In the next section we give the central definitions and formally state the main

theorems. We then proceed to the proofs of each theorem.

2 Definitions and statements of theorems

Given a finite generating set S (which we will assume is closed under inverses, or

symmetric) for a group G, let CS denote the corresponding Cayley graph. There

is a natural map from the free monoid on S, S∗, onto G. A set of normal forms is

a section of this map, that is, it is a choice of how to express each group element

in terms of the generators. The corresponding collection of paths in the Cayley

graph from the identity out to each vertex described by this set of normal forms

is often referred to as a combing.
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Suppose G is a finitely presented group, and let X be the universal cover

of the standard 2-complex associated to some finite presentation. Choose a base

point ε ∈ X0. The following more general definitions of combings are due to

Mihalik and Tschantz [M-T].

A 0-combing is essentially a choice of a path in the 1-skeleton X1 from ε to

each point of X0. Viewing X1 as the Cayley graph of the group G, this can be

thought of as the standard notion of a combing for G.

Formally, a 0-combing of X is a homotopy Ψ : X0 × [0, 1] → X1 such that

Ψ(x, 0) = ε and Ψ(x, 1) = x for all x ∈ X0. The map Ψ is a tame 0-combing

if for each compact set C ⊆ X there is a compact set D ⊆ X such that for

all x ∈ X0, Ψ−1(C) ∩ ({x} × [0, 1]) is contained in a single path component of

Ψ−1(D) ∩ ({x} × [0, 1]).

To define a 1-combing, these definitions are extended to one dimension

higher, giving a choice of path in X from ε to each point of X1, in a contin-

uous fashion. A 1-combing of X is a homotopy Ψ : X1 × [0, 1] → X such that

Ψ(x, 0) = ε and Ψ(x, 1) = x for all x ∈ X1, and such that Ψ(X0 × [0, 1]) ⊆ X1.

It follows that the restriction of Ψ to X0 × [0, 1] is a 0-combing. The map Ψ is

a tame 1-combing if this restriction is a tame 0-combing, and if for each com-

pact set C ⊆ X there is a compact set D ⊆ X such that for all edges e ⊆ X1,

Ψ−1(C)∩(e×[0, 1]) is contained in a single path component of Ψ−1(D)∩(e×[0, 1]).

A finite complete rewriting system for a finitely presented group G also in-

cludes a choice of normal forms for the elements of G. A rewriting system consists

of a finite set Σ and a subset R ⊆ Σ∗ × Σ∗, where Σ∗ is the free monoid on the

set Σ. An element (u, v) ∈ R, called a rule, is also written u → v. In general if

u → v then for any x, y ∈ Σ∗, we write xuy → xvy and say that the word xuy is

rewritten (or reduced) to the word xvy. for some An element x ∈ Σ∗ is irreducible

if it cannot be rewritten. The ordered pair (Σ, R) is a rewriting system for a

monoid M if

〈 Σ | u = v if (u, v) ∈ R 〉

is a presentation for M . A rewriting system for a group is a rewriting system for

the underlying monoid; that is, the elements of Σ must be monoid generators for

the group.

A rewriting system (Σ, R) is complete if the following conditions hold.

C1) There is no infinite chain x → x1 → x2 → · · · of rewritings. (In

this case the rewriting system is called Noetherian.)

C2) There is exactly one irreducible word representing each element of

the monoid presented by the rewriting system.
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The rewriting system is finite if R is a finite set. Regrettably, unlike tame comb-

ings, the existence of a finite complete rewriting system is dependent upon the

choice of generating system.

Because we want to move between the Cayley graph of a group for a given

set of generators and rewriting systems based on those generators, all of the

rewriting systems in this paper will have generating sets which are closed under

taking formal inverses. This often occurs naturally since Σ must be a set of

monoid generators, and in most cases this is a harmless restriction since every

group which has a finite complete rewriting system on some set of generators

Σ, also has one on Σ′ = Σ ∪ Σ−1, with extra rules taking generators in Σ−1 to

their irreducible representatives in Σ∗ from the old rewriting system. For more

information on rewriting systems, consult [Co], [H], [L], and the references cited

there.

Terminology: In order to improve the exposition we often drop the adjectives

“finite” and “complete” when referring to rewriting systems. None the less we

are always assuming the rewriting systems are finite complete rewriting systems,

and that they have a symmetric set of generators.

Theorem A. A group which admits a finite complete rewriting system has a

tame 1-combing.

In addition to thinking of the Cayley graph as a topological space, we also

think of CS as a metric space with the word metric, that is, where each edge is

given the metric structure of the unit interval. If n is any positive integer, then we

can define the sphere of radius n to be S(n) = { x ∈ CS | d(ε, x) = n } where ε is

the identity element; similarly, the ball of radius n is B(n) = { x ∈ CS | d(ε, x) ≤

n }.

A group G is almost convex [Ca] with respect to a finite presentation on a

symmetric set of generators if there is a constant A such that for any integer n

and any pair of group elements g, h ∈ G with g, h ∈ S(n) and d(g, h) ≤ 2, there

is a path in B(n) of length at most A joining g and h.

Similarly we can discuss the geometry of paths; in particular, a path in CS

is geodesic if it is a minimal length path connecting its endpoints. The collection

of irreducible words of a finite complete rewriting system is a set of geodesic

normal forms if and only if none of the rules of the system increase length; such

a rewriting system is a geodesic rewriting system. Geodesic rewriting systems,

and the special case of shortlex rewriting systems discussed below, are the only

instances in this paper where the assumption that the generating set is symmetric

might be restrictive. It is conceivable that a group could admit a geodesic (or
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shortlex) rewriting system, but that no such rewriting system can be created for

a symmetric set of generators. No examples of such pathology are known.

In practice one establishes the Noetherian condition C1) for a rewriting sys-

tem by using a well-founded ordering on the words in Σ∗ and checking that if

u → v ∈ R then u > v in the ordering. For example, one can establish the

Noetherian condition by showing that the rewriting rules are compatible with a

shortlex ordering. In the shortlex ordering a total order is placed on the genera-

tors of G; then a word w is defined to be less than a word v if w is shorter than

v or they are of the same length but w is lexicographically prior to v. Rewriting

systems that are compatible with a shortlex ordering are geodesic.

Theorem B. If G has a geodesic finite complete rewriting system, then G is

almost convex.

In order to complete the first circle of implications mentioned in the intro-

duction we establish the following result.

Theorem C. If G is almost convex, then G has a tame 1-combing.

An alternative method of establishing the Noetherian property is to use a

weightlex ordering. Here each generator is assigned a positive integer weight and

w is less than v if the total weight of w is less than the total weight of v, or if

the weights are the same, w is lexicographically prior to v. Any group with a

finite complete rewriting system compatible with a weightlex ordering, has one

on a symmetric set of generators, so again in this case our assumption is not

restrictive.

A finitely presented group G satisfies a linear isodiametric inequality if there

is a linear function f : N → N such that for any freely reduced word w represent-

ing the trivial element of G, there is a van Kampen diagram D with boundary

label w and with the (word metric) distance from any vertex of D to the basepoint

at most f(l(w)), where l(w) is the word length of w. The group G satisfies an

exponential isoperimetric inequality if there is an exponential function g : N → N

such that for any freely reduced word w representing the trivial element, there is

a van Kampen diagram D for w containing at most g(l(w)) 2-cells. The reader

is referred to [L-S] for information on van Kampen diagrams and to [G4] for

background on the isodiametric and isoperimetric inequalities.

Theorem D. If G admits a finite complete rewriting system compatible with a

weightlex ordering, then G satisfies linear isodiametric and exponential isoperi-

metric inequalities.
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3 Proof of Theorem A

We begin by showing that a rewriting system defines a tame 0-combing for a

group.

Lemma 1. The irreducible words of a finite complete rewriting system for G give

a tame 0-combing for G.

Proof. Given a finite complete rewriting system (Σ, R) for G, let X denote the uni-

versal cover of the 2-complex associated to the presentation given by the rewrit-

ing system; define a 0-combing using the rewriting system by taking the path

Ψ(x, t) : [0, 1] → X1 for a given x ∈ X0 to be the path following the irreducible

word representing x. A prefix u of an irreducible word w = uv ∈ Σ∗ cannot con-

tain the left hand side of a rule, so the prefix must also be irreducible. This means

that the 0-combing Ψ is prefix closed; that is, for any x ∈ X0, Ψ(x, t) = Ψ(x, t′)

implies t = t′, and for any y ∈ Ψ({x}×(0, 1))∩X0, the combing path Ψ({y}×[0, 1])

is a simply a reparametrization following the path Ψ({x} × [0, t]) from ε to y.

In [M-T] it is shown that the compact sets in the definitions of tame 0- and

1-combings can be replaced with finite subcomplexes. Given a finite subcomplex

C ⊆ X , let D be the subcomplex

D = C ∪ (∪x∈C0Ψ({x} × [0, 1])).

Then D is also a finite subcomplex. Prefix closure implies that for any point

x ∈ X0, Ψ−1(D) ∩ ({x} × [0, 1]) must be an interval [0, t] for some t. It is then

immediate that Ψ−1(C) ∩ ({x} × [0, 1]) is contained in a single path component

of the pullback of the set D. Hence Ψ is tame.

In order to be able to extend the 0-combing from Lemma 1 to a 1-combing,

we first replace the rewriting system for G by an equivalent minimal one. For

any rewriting system (Σ, R), write x
∗

→ y whenever x = y or there is a finite

chain of arrows x → x1 → x2 → · · · → y. Two complete rewriting systems (Σ, R)

and (Σ′, R′) are equivalent if Σ = Σ′, their irreducible words are the same, and

whenever x
∗
→ z in R, with z irreducible, then x

∗
→ z in R′, also. The rewriting

system (Σ, R) is minimal if for every (u, v) ∈ R, every proper subword of u is

irreducible and v is irreducible. The following lemma was proven in [Sq].

Lemma 2. (Squier) Given a finite complete rewriting system (Σ, R) for G, there

is an equivalent minimal finite complete rewriting system.

Now assume the rewriting system for G is minimal, and let X be the universal

cover of the 2-complex associated to this rewriting system. The 1-combing Ψ on

X1 × [0, 1] will be defined inductively.
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Given an edge e ⊂ X1, the endpoints of e correspond to elements g, h ∈ G,

where we can write gs = h for some generator s ∈ Σ. Write the irreducible word

representing a group element g as ηg. Put any total ordering on X0, for example

a shortlex ordering on the irreducible words, and suppose g > h in this ordering.

We can consider e to be the union of two oriented edges f1 and f2, where the

initial vertices are i(f1) = g, i(f2) = h and the terminal vertices are t(f1) = h,

t(f2) = g. A homotopy Θfi
: fi × [0, 1] → X will be defined for both orientations

i = 1, 2. These will agree on the endpoints of the edges and will be compatible

with the zero combing previously defined. That is, if e is and edge and f1 and

f2 are the orientations of e, then Θfi
(x, t) = Ψ(x, t) whenever x is one of the

endpoints g, h ∈ X0 and t ∈ [0, 1]. (We need combings on both orientations in

order to mimic the idea of ‘prefix closure’ used in the proof of Lemma 1.) The

1-combing Ψ restricted to the edge e is defined to be Θf1
on the corresponding

oriented edge f1.

The prefix-size ps(f) of an oriented edge f with i(f) = g, t(f) = h, and

gs = h in G, is defined to be the number of rewritings needed to rewrite ηgs

to ηh, where at each step the shortest reducible prefix is rewritten. Minimality

of R implies that there is only one way to rewrite that prefix in each case, and

completeness of R implies that the prefix-size of an oriented edge must always be

finite.

We define Θf on an oriented edge f by inducting on the prefix-size of f .

If ps(f) = 0, then ηgs = ηh, so f is in the image of the 0-combing line to h;

that is, (abusing notation, and thinking of f as representing the corresponding

unoriented edge also) f ⊆ Ψ({h} × [0, 1]). For any point x ∈ f , define the path

Θf ({x} × [0, 1]) to be a reparametrization of the path from ε to h, stopping at x

(see Fig. 1).

η

h

g s

hg

η

ε

Fig. 1. The prefix size is zero

Now suppose that ps(f) = 1. The word ηgs ∈ Σ∗ contains a suffix which is

a left hand side of a rule; this rule is uniquely determined because R is minimal

and ηg is irreducible. So we can write ηg = wu where us → v is a rule in R. If

the rule us → v is of the form s−1s → 1, then the unoriented edge corresponding

to f is in the image of the 0-combing, and as before we can define Θf to be a

reparametrization of the 0-combing (see Fig. 2). Otherwise, the relation given

by us = v defines the boundary of a 2-cell in X and f is a face of this 2-cell.
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The combing paths ηg and ηh from ε to the endpoints of f follow a common path

along w from ε to the 2-cell, and then follow the boundary of the 2-cell. All of the

edges in the boundary of this 2-cell except f are in the image of the 0-combing,

since they are on the paths given by either ηg or ηh. Θf is defined on f × [0, 1]

to follow w and then fill the interior of this cell (see Fig. 3).

η

g

s

g

h

h

η

ε

Fig. 2. The prefix size is one, first case

w u

s
v

h

g

h

gη

η

ε

Fig. 3. The prefix size is one, second case

Finally, suppose that ps(f) = n, and that for any oriented edge f ′ with

ps(f ′) < n, we have defined Θf ′ . As before, the word ηgs ∈ Σ∗ contains a suffix

which is a left hand side of a rule, and this rule is uniquely determined. The

map Θf is defined on f × [ 12 , 1] to fill the 2-cell defined by the application of this

rule. If we write ηg = wu in Σ∗, where us → v is a rule in R, then the image

Θf (x, 1
2
) for any point x ∈ f lies on the paths based at the end of w defined by

u or v. Since wu = ηg defines the 0-combing path Ψ({g} × [0, 1]), if Θf (x, 1
2) lies

on the path given by u, then Θf ({x} × [0, 1
2
]) can be defined to follow wu from ε

to Θf (x, 1
2 ), by reparametrization (see Fig. 4).

On the other hand, suppose Θf (x, 1
2) lies on the path defined by v based

at the end of w. If Θf (x, 1
2
) ∈ Ψ(X0 × [0, 1]), then again define Θf ({x} ×

[0, 1
2 ]) to follow the 0-combing path from ε to Θf (x, 1

2 ) with reparametrization.

If Θf (x, 1
2
) /∈ Ψ(X0 × [0, 1]), then Θf (x, 1

2
) must lie on an edge e′. There is

an orientation f ′ of e′ with i(f ′) = g′, t(f ′) = h′, and g′s′ = h for an s′ ∈ Σ,

such that at some stage in the rewriting of ηgs by rewriting shortest prefixes,

the process must rewrite, in some finite number of steps, a word of the form

ηg′s′z to ηh′z, for some z ∈ Σ∗. In particular, this procedure must rewrite the

prefix ηg′s′ to ηh′ by always rewriting shortest possible prefixes. This implies that

ps(f ′) < ps(f). By induction, then, the homotopy Θf ′ on f ′ × [0, 1] has already

been defined; define Θf ({x}× [0, 1
2 ]) to follow (with reparametrization) the path

defined by the homotopy Θf ′ , from ε to Θf (x, 1
2 ) (see Fig. 5).
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sg h

u

v

w
h

gη

η

ε

Fig. 4. Defining Θf on [ 12 , 2]

g h

ε

η

Θ

x

f x

Θf
f( [0,1])'

'

h'

ηg'

( ), 1
2

g'

h'

s'

Fig. 5. Completing the definition of Θf by induction

We now have homotopies defined for every vertex and for every orientation

of every edge in X . The 1-combing Ψ on X1 × [0, 1] is defined to be the union of

0-combing of Lemma 1 on X0 × [0, 1] and the edge combings, where the combing

for an edge e with endpoints g > h is the homotopy Θf on the oriented edge f

with i(f) = g and t(f) = h. The edge combings are identified along the combings

of their bounding vertices.

Proposition 1. The 1-combing Ψ is a tame 1-combing.

11



Proof. Suppose C is a finite subcomplex of X . Let D be the finite subcomplex

D = C ∪ (∪xΨ({x} × [0, 1]))∪ (∪fΘf (f × [0, 1])),

where the union is taken over all points x ∈ C0 and both orientations f of all

edges in C1. To establish that Ψ is tame it is sufficient to show that once the path

Ψ(y, t) leaves the subcomplex D it does not return to C; that is, for any y ∈ X1,

Ψ−1(C) ∩ ({y} × [0, 1]) is contained in the component of Ψ−1(D) ∩ ({y} × [0, 1])

containing (y, 0).

Assume to the contrary that there is some t such that Ψ(y, t) ∈ C while there

is some t′ < t with Ψ(y, t′) /∈ D. By possibly taking a larger t we can assume

further that Ψ(y, t) ∈ C1. If Ψ(y, t) is actually a vertex then, by the construction,

Ψ({y}×[0, t]) is the combing path for that vertex, hence Ψ({y}×[0, t]) is contained

in D, contradicting the existence of t′.

The only other possibility is that Ψ(y, t) ∈ e for some edge e in C. But in

this case Ψ(y × [0, t]) is contained in Θf1
(f1 × [0, 1]) or Θf2

(f2 × [0, 1]) where the

fi are the two orientations of e. But both of these sets are contained in D hence

once again Ψ({y} × [0, t]) ⊂ D.

4 Proof of Theorem B

Suppose (Σ, R) is a geodesic finite complete rewriting system for a group G with

symmetric generating set Σ, and suppose that g, h ∈ G with g, h ∈ S(n) and

d(g, h) ≤ 2. We will show that there is a path in B(n) of length at most A = 2σρ

joining g and h, where σ is the cardinality of Σ, and ρ is the length of the longest

relator in the rewriting system. Write ηg for the irreducible word representing g,

as in the proof of Theorem A.

Suppose that d(g, h) = 2. Then there is an element g′ ∈ G with d(g, g′) =

1 = d(g′, h). If g′ ∈ S(n − 1), then there is a path of length 2 in B(n) from g

to h. If g′ ∈ S(n), we have the same situation as the case when d(g, h) = 1, and

we will find a path in B(n) from g to g′ of length at most σρ; hence there is a

path in B(n) from g to h of length at most A. If g′ ∈ S(n + 1), let t be the last

letter in ηg′ ; since ηg′ is a geodesic, g′t−1 ∈ S(n). A simple modification of the

proof for the case when d(g, h) = 1 shows that there is a path in B(n) from g to

g′t−1 of length at most σρ (we leave the details to the reader). Repeating this

construction to find a path from g′t−1 to h gives the desired bound.

Finally, suppose that d(g, h) = 1, and let s0 ∈ Σ be the generator such that

gs0 = h. The word ηgs0 can be expressed as w0u0s0 where u0s0 → v0s1 ∈ R and
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s1 ∈ Σ. Let g1 be the group element given by the word w0v0 so that h = g1s1;

since rewriting cannot increase length, g1 ∈ B(n). If g1 represents a vertex in

the path given by ηh, then we are done. Otherwise we can repeat this process by

expressing the word ηg1
s1 as w1u1s1 with u1s1 → v1s2 ∈ R and letting g2 ∈ B(n)

be the group element given by the word w1v1 so that h = g2s2 (see Fig. 6).
g h
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1

2
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h

η
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u u
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1

v
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1
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0
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1

2

2

η η
g

gη

Fig. 6. Rewriting to find the almost convexity constant

If, in this process, it ever occurs that si = sj for i 6= j then the process

above would outline how to construct a rewriting from ηgi
si to ηgj

sj , hence from

a word back to itself. By the Noetherian property this is not possible. Thus there

can be at most σ steps in this process, and so ηgi
si = ηh for some i < σ. The

word u−1
0 v0u

−1
1 v1 . . . u−1

i visi then defines a path in B(n) from g to h of length

less than σρ.

5 Proof of Theorem C

Given Poénaru’s work [P] and the central motivation for the definition of a tame

1-combing, it surprises us that this theorem has not yet appeared in the literature.

Let G be a finitely presented group with finite presentation P which is almost

convex. Let A be the constant such that between any two vertices g and h in

S(n) with d(g, h) ≤ 2 there is a path in B(n) connecting g to h of length less

than or equal to A.

We will work with an extended presentation for G, with the same generators,

but with extra relations; we add to the set of relations every word of length ≤ A+2

which represents the identity. The condition AC is known to be dependent on
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the choice of generating set [T], but for a fixed generating set it is independent

of choice of relations. We denote the universal cover of the 2-complex associated

to this padded presentation by X and define B̃(n) to be the subcomplex of X

consisting of B(n) ⊆ X1 together with all of the 2-cells in X whose boundaries

are completely contained in B(n).

Fix a prefix closed geodesic 0-combing; for example, the combing given by

taking the shortlex minimal representative of each element. Assume that every

edge in the ball B(n) ⊆ X1 has a combing which is consistent with the 0-combing

at its endpoints and satisfies the following ‘monotone increasing’ property:

(M) For any point y ∈ X1 for which the 1-combing Ψ is already defined,

and any t ∈ [0, 1], if Ψ(y, t) ∈ B̃(k + 1)\B̃(k), then Ψ(y, t′) ∈ X\B̃(k)

for all t′ > t.

We show how to extend this combing to B(n + 1).

Let e be an edge in B(n + 1)\B(n) corresponding to the generator s and

with vertices g and h. Let ηg and ηh be the geodesic combings to the end points

of e.

If e is part of the 0-combing then simply reparametrize this combing to give

the combing for the edge e. Assume then that e is not part of the 0-combing.

There are two possibilities, either (1) both end points of e are in B(n), or (without

loss of generality) (2) the last edge t in ηh is also not in B(n). We assume we are

in case (2) and leave the easier case (1) to the reader.

Denote the edge from ht−1 to h = gs by f . Since the presentation is almost

convex, there is a path p in B(n) of length at most A between g and ht−1. Thus

the path pts−1 is a loop based at the end of the word ηg of length ≤ A + 2, and

therefore in X it is filled by a 2-cell. By assumption, the 1-combing has already

been defined for all of the edges in the path p, and f is in the image of the 0-

combing. The combing for the edge e consists of the union of the combings for

the edges in the path pt (identified along the 0-combings for the vertices in pt)

plus a mapping from the path pt to e through the 2-cell bounded by pts−1. This

extension still satisfies property (M); we define the 1-combing Ψ to be the union

of the edge combings identified along the chosen 0-combing.

Proposition 2. The combing just described is a tame 1-combing.

Proof. Suppose C is some finite subcomplex of X , and suppose C ⊆ B̃(n) for

some n. Let D = B̃(n). Because the 1-combing is ‘monotone’, once a combing

line leaves B̃(n), it never returns, and thus it could not possibly intersect C. In

terms of the definition of a tame 1-combing, for all y ∈ X1, Ψ−1(C)∩({y}× [0, 1])

is contained in the component of Ψ−1(D)∩ ({y}× [0, 1]) which contains (y, 0).
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6 Proof of Theorem D

Let (Σ, R) be a finite complete rewriting system for G such that the rules of

the rewriting system are compatible with a weightlex ordering. Define constants

λh = max{ wt(si) | si ∈ Σ } and λl = min{ wt(si) | si ∈ Σ }, and let λ = λhλ−1
l .

Then for any w ∈ Σ∗, the length of w is less than or equal to λ−1
l wt(w) and the

weight of w is at most λhl(w). So for any g ∈ G, l(ηg) ≤ λd(ε, g). (Since any

subword of an irreducible word is irreducible it follows that the 0-combing defined

by the irreducible words is quasi-geodesic.)

Let w ∈ Σ∗ be any word evaluating to the identity in G. Then because

of the Noetherian property of the rewriting system, w rewrites to the identity.

Thus a string of rewritings defines a van Kampen diagram for w with a (possibly

degenerate) 2-cell for each application of a rule. Let the rewriting be w = z0 →

z1 → z2 → · · · → 1 come from rewriting the shortest possible reducible prefix at

each stage. Since the rewriting rules are compatible with a weightlex ordering,

each rewriting preserves or reduces the weight of the previous word. For a given

k ∈ Z the total number of words in Σ∗ of weight k or less is bounded by the

number of words of length at most kλ−1
l , which in turn is at most (σ + 1)kλ

−1

l .

Here σ is the cardinality of Σ and the “+1” indicates an empty letter, thus

allowing words of length less than kλ−1
l . Thus the total number of rewriting

steps is bounded by (σ + 1)wt(w)λ−1

l ≤ (σ + 1)λl(w).

Proposition 3. If G admits a rewriting system compatible with a weightlex or-

dering, then G satisfies an exponential isoperimetric inequality.

Let g be any vertex in this van Kampen diagram for w; by construction g

corresponds to a subword of some word zi in the rewriting. Because the rewriting

of w rewrites the shortest irreducible prefixes, the irreducible word ηg connecting

ε to g is contained in the diagram for w. Since rewriting can only preserve or

reduce weight,

wt(ηg) ≤ wt(zi) ≤ wt(w)

Combining this with the bounds given above on lengths, we get

l(ηg) ≤ λ−1
l wt(ηg) ≤ λ−1

l wt(w) ≤ λl(w).

So the distance from ε to a vertex in the van Kampen diagram for w is bounded

by the linear function λl(w).

Proposition 4. If G admits a rewriting system compatible with a weightlex or-

dering, then G satisfies a linear isodiametric inequality.
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