
DETERMINING SOLUBILITY FOR FINITELY

GENERATED GROUPS OF PL HOMEOMORPHISMS

COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

Abstract. The set of finitely generated subgroups of the group PL+(I)
of orientation-preserving piecewise-linear homeomorphisms of the unit
interval includes many important groups, most notably R. Thompson’s
group F . Here, we show that every finitely generated subgroup G <

PL+(I) is either soluble, or contains an embedded copy of the finitely
generated, non-soluble Brin-Navas group B, affirming a conjecture of
the first author from 2009. In the case that G is soluble, we show the
derived length of G is bounded above by the number of breakpoints of
any finite set of generators. We specify a set of ‘computable’ subgroups
of PL+(I) (which includes R. Thompson’s group F) and give an algo-
rithm which determines whether or not a given finite subset X of such
a computable group generates a soluble group. When the group is sol-
uble, the algorithm also determines the derived length of 〈X〉. Finally,
we give a solution of the membership problem for a particular family
of finitely generated soluble subgroups of any computable subgroup of
PL+(I).

1. Introduction

By studying subgroups of the group PL+(I) of piecewise-linear orientation-
preserving homeomorphisms of I = [0, 1] (with finitely many breaks in slope)
through the dynamical properties of the action of the subgroup on the unit
interval, researchers have obtained considerable information on groups that
embed as subgroups of PL+(I). Brin and Squier [8] show that the group
PL+(I) has no embedded non-abelian free groups. Guba and Sapir [12]
show that any non-abelian subgroup of PL+(I) contained in R. Thomp-
son’s group F (which consists of the homeomorphisms for which all break-
points are 2-adic rational numbers and all slopes are powers of 2) contains
an embedded copy of Z ≀ Z. In [6, 4, 3, 5] a theory is built connecting the
solubility class of a subgroup G < PL+(I) with data on how the supports
of the elements of G overlap with each other, and how these supports relate
to the support of the whole action of G on I. One result in that theory
is that the non-soluble non-finitely generated group W =

⊕
n∈NWn, where

Wn = (. . . ((Z ≀ Z) ≀ Z) ≀ . . .Z) ≀ Z is the iterated wreath product of n copies

2010 Mathematics Subject Classification. 20F10; 20F16, 37C25
Keywords: Piecewise linear homeomorphism, Thompson’s group, soluble, membership
problem.

1

2 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

g

00

1

1

h

1

100

hg
g

g
1

i

00 1

1

Figure 1. Transition chain, one-sided overlap, and tower of
infinite height

of Z, satisfies the properties that W contains an embedded copy of every
soluble subgroup of PL+(I), and any non-soluble subgroup of PL+(I) con-
tains an embedded copy of W (Corollary 1.2 and Theorem 1.1, respectively,
of [5]). In the finitely generated case, it has been conjectured [5] that a
stronger result holds, namely that any finitely generated non-soluble sub-
group of PL+(I) contains an embedded copy of the Brin-Navas group B,
the finitely generated non-soluble group introduced by Brin [7, Section 5]
(as G1) and Navas [13, Example 6.3] (as Γ) that is presented by

B = 〈{wi | i ∈ Z}, s | ws
i = wi+1, [w

wm
k

i , wj] = 1 (i < k, j < k,m ∈ Z \ {0})〉,

and generated by s and w0. In this paper we verify this conjecture.

To be more specific, we say that G admits a transition chain if there are
two elements g, h ∈ G with components of support (a, b), (c, d), respectively,
such that a < c < b < d. If G does not admit such a chain, then we say that
G is chainless. In a similar fashion, the group G admits a one-sided overlap
if there are two elements g, h ∈ G with components of support (a, b), (a, c)
or (a, b), (c, b), respectively, such that a < c < b. Finally, G admits a tower
of infinite height if there is an infinite sequence {gi}i∈N of elements of G
with components of support Ai, respectively, such that Ai+1 (Ai for all i.
We illustrate these three properties in the special case of elements with a
single component of support in Figure 1.

In [4, Theorem 1.1 and Lemma 1.4] (restated below in Theorem 2.3 and
Lemma 2.4(2)) the first author shows that a soluble subgroup of PL+(I)
must be chainless and does not admit a tower of infinite height. In our main
theorem (Theorem 3.1) in Section 3 below, we show that in the finitely
generated case the converse of each of these also holds. In Lemma 2.2 we
show that for a subgroupG ≤ PL+(I) generated by a finite setX ⊂ PL+(I),
the number of G-orbits of the set of breakpoints of elements of G is bounded
above by the cardinality of the set of breakpoints of the elements ofX (where
a point x ∈ (0, 1) is a breakpoint of g ∈ PL+(I) if g changes slope at x);
this is applied in Theorem 3.1 to obtain a bound on the derived length in
the soluble case.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 3

Theorem 3.1. Let G < PL+(I) be generated by a finite set X. The
following are equivalent.

(1) G is not soluble.
(2) G admits a transition chain.
(3) G admits a one-sided overlap.
(4) G admits a tower of infinite height.

Moreover, if G is soluble, the derived length of G is less than or equal to the
cardinality of the set BX of breakpoints of elements of X.

Our first application of Theorem 3.1 is a verification of the conjecture dis-
cussed in the first paragraph of this introduction. Note that since a soluble
group cannot contain a non-soluble subgroup, a subgroup G ≤ PL+(I) con-
taining a copy of the Brin-Navas group B is also non-soluble. Theorem 1.4
of [5] states that if G admits a transition chain, then G admits an embedded
copy of B, and so we obtain the following corollary resolving the conjecture.

Corollary 1.1. Let G be a finitely generated subgroup of PL+(I). Then G

is non-soluble if and only if the Brin-Navas group embeds in G.

Thus B not only contains every soluble subgroup of PL+(I), but B is
also contained in every finitely generated non-soluble subgroup of PL+(I).

In Section 4 we give further applications of Theorem 3.1 to several algo-
rithmic questions for subgroups of PL+(I). We restrict our consideration to
computable subgroups G < PL+(I), in which several basic operations can
be implemented (see p. 12 for the full definition). Examples of requirements
for a group C ≤ PL+(I) to be computable are that the breakpoints and
endpoints of components of support of elements can be computed and com-
pared, and that given a finite collection of slopes of affine components of
graphs of functions in C, a computer can determine whether the multiplica-
tive subgroup of R∗

+ generated by these slopes is discrete (i.e., has a lower
bound on the distance from the identity 1 for all non-identity elements). In
particular, we note that the word problem is solvable in finitely generated
computable subgroups of PL+(I).

For a finitely generated group G with solvable word problem, it is natural
to ask whether G has solvable membership decision problem (MDP) for a
fixed subgroup H of G, or solvable uniform subgroup membership problem
(USMP). Given a group G with a finite generating set Y and a subgroup H

of G, the MDP for the subgroup H asks whether there is an algorithm that,
upon input of any word w over Y ±1, can determine whether or not w lies in
the subgroup H. The USMP for G asks whether there is an algorithm that,
upon input of any word w over Y ±1 together with a finite list X of words
over Y ±1, can determine whether or not w lies in the subgroup 〈X〉.

The computable subgroups of PL+(I) include R. Thompson’s group F .
Many algorithmic properties are known for F , including linear time solutions

4 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

of the word problem [9, 12, 14] and conjugacy problem [12, 2]. Golan [10]
has shown that the generation problem (determining whether a finite input
set X of elements of F generates all of F) is solvable for F , and Guba and
Sapir [12] solve the membership decision problem for subgroups H of F that
are the split group (defined in Section 2.3) of a finitely generated subgroup
of F . However, solvability of the MDP for many subgroups, and solvabil-
ity of the uniform subgroup membership problem, are open questions for
R. Thompson’s group F [11],[1, Question 2.11], and more generally for com-
putable subgroups of PL+(I).

A potential approach to building an algorithm to solve the USMP for
a computable subgroup G of PL+(I) is to have the first step of the al-
gorithm determine whether the input set X generates a soluble subgroup;
the algorithm then branches into separate subalgorithms in the soluble and
non-soluble cases. That is, this first step requires a solution of the soluble
subgroup recognition problem (SSRP); given a group G with a finite generat-
ing set Y , the SSRP asks whether there is an algorithm that, upon input of
a finite set X of words over Y ±1, can determine whether or not the subgroup
〈X〉 of G generated by X is a soluble group.

Our next application of Theorem 3.1 is a solution of the SSRP for com-
putable subgroups of PL+(I), including R. Thompson’s group F . (We note
that for all of the algorithms in this paper, we allow elements of G to be
input using formats other than a list of words over a finite generating set
of G; for example, if all breakpoints and slopes of a homeomorphism are
rational numbers, the element can be input as an integer list of numerators
and denominators of the breakpoints and slopes.)

Theorem 4.4. Let C be a computable subgroup of PL+(I). The soluble
subgroup recognition problem is solvable for C; that is, there is an algorithm
which, upon input of a finite subset X of C, can determine whether or not the
subgroup 〈X〉 generated by X is a soluble group. Moreover, in the case that
the group 〈X〉 is soluble, the algorithm also determines its derived length.

The proof of Theorem 4.4 uses the concept of controllers for chainless
groups developed by the first author in [3]; we discuss background on this
topic in Section 2.4. The key information that enables the algorithm in
Theorem 4.4 to halt after finitely many steps in the non-soluble case is
the bound on derived length computed from the finite list X, obtained in
Theorem 3.1.

The algorithm of Theorem 4.4 also leads to a proof that the membership
decision problem is solvable for some finitely generated soluble subgroups of
computable subgroups of PL+(I). A set X ⊂ PL+(I) is a set of one-bump
functions with fundamental domains if X satisfies the following properties:

(Z0) Each element h of X admits exactly one component of support,
which we denote by Ah. (That is, the graph of h has “one bump”.)

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 5

(Z1) No pair of elements of X forms a transition chain or a one-sided
overlap.

(Z2) If h, h′ ∈ X and h 6= h′, then Ah 6= Ah′ .
(Z3) For each h ∈ X, there is an rh ∈ Ah such that for every h′ ∈ X

with Ah′ (Ah, the containment Ah′ ⊆ (rh, rh · h) also holds. (That
is, (rh, rh ·h) is a fundamental domain for the conjugation action by
powers of h.)

In Lemma 4.3 we show that a group H = 〈X〉 generated by a finite set X of
one-bump functions with fundamental domains is a soluble group, contained
in the smallest class of groups that includes the trivial group and is closed
under wreath products with Z and finite direct sums.

Corollary 4.7. Let C be a computable subgroup of PL+(I). Let H be a
subgroup of C generated by a finite set of one-bump functions with funda-
mental domains. Then the membership decision problem is solvable for H;
that is, there is an algorithm which, upon input of an element w of C, can
determine whether w ∈ H.

In Corollary 4.6 we show that there is an algorithm to find a finite generat-
ing set consisting of one-bump functions with fundamental domains for any
finitely generated split soluble subgroup of a computable group. Combin-
ing these algorithms shows that membership in such subgroups is uniformly
solvable.

Corollary 4.8 Let C be a computable subgroup of PL+(I). There is an
algorithm which, upon input of an element w of C and a finite subset X of
C generating a split soluble group, can determine whether w ∈ 〈X〉.

Before proceeding to the proofs of these results in Sections 3 and 4, we
begin in Section 2 with background and notation for the group PL+(I).

Acknowledgments

The third author was partially supported by grants from the Simons Foun-
dation (#245625) and the National Science Foundation (DMS-1313559).

The authors thank Gili Golan for helpful discussions.

2. The group PL+(I)

Here we give the basic definitions we require for discussing the group
PL+(I) and its elements. The results discussed in this section are first
introduced in either [6], or later in [4, 3, 5].

2.1. Right actions, supports, slopes, and breakpoints. Throughout
this paper we will use right action notation. In particular, if x ∈ [0, 1] and
g ∈ PL+(I), we write xg for the image of x under the map g. As is somewhat

6 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

traditional (but not universal) for right actions, for elements g, h ∈ PL+(I),
and S ⊂ [0, 1] we set

Sg := {sg | s ∈ S}

Supp(g) := {x ∈ [0, 1] | xg 6= x}

gh :=h−1gh

[g, h] := g−1h−1gh

for the image of S under the action of g, the support of g, the conjugate of
g by h, and the commutator of g and h, respectively. With this notation in
place we have a standard lemma from permutation group theory, restated
for elements of the group PL+(I).

Lemma 2.1. Let g, h ∈ PL+(I). Then Supp(gh) = Supp(g)h.

For a subgroup G ≤ PL+(I), the associated slope group of G, denoted
ΠG, is the multiplicative subgroup of the positive real numbers generated
by the slopes of affine components of elements of G.

For g ∈ PL+(I) and x ∈ (0, 1), we say that x is a breakpoint of g whenever
xg′ does not exist (here, we are using g′ to denote the derivative of g). For
a set X ⊂ PL+(I) we denote by BX the set of breakpoints of the elements
in X. That is

BX :=
{
x ∈ (0, 1) | ∃g ∈ X,xg′ does not exist

}
.

A key technical point used in the proof of Theorem 3.1 is the following
lemma, well known to researchers in PL functions on the line.

Lemma 2.2. If G < PL+(I) has a finite generating set X, then the number
of orbits (under the action of G) of the set of all breakpoints of G is bounded
above by the (finite) cardinality of the set of breakpoints of X.

2.2. Orbitals, towers, and transition chains. We extend the definition
of support to groups, so for a group G ≤ PL+(I), we set

Supp(G) :=
⋃

g∈G

Supp(g),

noting that if x ∈ Supp(G) then there is some g ∈ G such that xg 6= x.
As Supp(G) is an open set, it can be written as a disjoint union of open
intervals, each one of which is called an orbital of G. That is, an orbital of
G is a connected component of the support of the action of G on [0, 1]. Note
that if A 6= B are two orbitals of G, then there is no element of G which
can move a point in A to a point in B, which partly motivates our language
(as it means that each G-orbit is contained in some orbital of G). For an
element g ∈ PL+(I), a subset A = (a, b) ⊂ [0, 1] is an orbital of 〈g〉 if and
only if A is a component of Supp(g); in this case we say A is an orbital of g.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 7

A signed orbital is a pair ((a, b), g) consisting of an open interval (a, b) ⊂
[0, 1] and an element g ∈ PL+(I) such that (a, b) is an orbital of g; here
(a, b) is the orbital and g is the signature.

A tower is a set T of signed orbitals satisfying the property that whenever
((a, b), g) and ((c, d), h) are in T , then

(1) (a, b) ⊆ (c, d) or (c, d) ⊆ (a, b), and
(2) (a, b) = (c, d) implies g = h.

For a tower T , the cardinality |T | is called the height of T . Given a group
G ≤ PL+(I) and a tower T , we say that T is associated with G, or that
G admits the tower T , if all the signatures of the signed orbitals in T are
elements of G. If G ≤ PL+(I) and A is an open subinterval of the unit
interval I, the orbital depth of A in G is the supremum of the heights of
finite towers associated with G in which the smallest orbital has the form
(A, g) for some g ∈ G. If G ≤ PL+(I), we set the depth of G to be the
supremum of the heights of the towers in the full set of towers associated
with G.

The graph on the right in Figure 1 depicts a tower of infinite height.
The ordering of indices, which appears inverted, favours the perspective
of “depth” over “height.” Reasons for this will become apparent in our
construction proving Theorem 4.4.

The main theorem of [4] is the following.

Theorem 2.3. [4, Theorem 1.1] Let G ≤ PL+(I) and n ∈ N. The group G

is soluble with derived length n if and only if the depth of G is n.

For chainless groups, towers have further special properties. A tower T

is exemplary if whenever (A, g), (B,h) ∈ T with A (B = (a, b) then

(1) the orbitals of g are disjoint from the ends of the orbital B, and
(2) no orbital of g in B shares an end with B.

Another way to put this is that there is an ǫ > 0 so that for any orbital C
of g we have C ∩B 6= ∅ implies C ⊂ (a+ ǫ, b− ǫ).

We say that G ≤ PL+(I) admits a complex overlap if G admits either a
transition chain or a one-sided overlap. The following lemma connects the
existence of a complex overlap for G, the depth of G, and the types of towers
that can occur. Much of this lemma is a restatement of lemmas in [4, 5];
we add a proof that existence of a transition chain implies existence of a
one-sided overlap.

Lemma 2.4. Let G be a subgroup of PL+(I).

(1) The group G admits a one-sided overlap if and only if G admits a
transition chain.

(2) [4, Lemma 1.4] If G admits a transition chain, then G admits an
infinite tower.

8 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

(3) [5, Lemma 2.7(2)] If G is chainless, then every tower associated with
G is exemplary.

Proof. It is shown in [5, Lemma 2.7(3)] that if a group G ≤ PL+(I) admits
a one-sided overlap, then G admits a transition chain.

Suppose that G admits a transition chain {((a, b), f), ((c, d), g)}, where
a < c < b < d. If a is not in the support of g, then f g admits an orbital
(a, e) with e 6= b, and hence the pair of signed orbitals {((a, b), f), ((a, e), f g)}
represents a one-sided overlap for G. Similarly, if d is not in the support of
f , then there is an e 6= d such that the pair {((c, d), g), ((e, d), gf } represents
a one-sided overlap for G.

We extend this endpoint-support argument to the left and the right until
we run out of orbitals of f or of g. Eventually we must fail to have an end of
one of these signed orbitals in the support of an orbital of the other element,
and therefore we can find a one-sided overlap where the signatures are either
the elements f and f g or the elements g and gf .

�

In particular, subgroups of PL+(I) that admit a complex overlap have
infinite depth, and so by Theorem 2.3 they are not soluble.

2.3. The split group and one-bump factors. Let G ≤ PL+(I). Given
an element f ∈ G, let A1, ..., Ak be the orbitals of f . For all 1 ≤ i ≤ k,
let fi be the element of PL+(I) defined by fi|Ai

= f |Ai
, and xfi = x for

all x ∈ I \ Ai. Each function fi has precisely one component of support,
the functions fi commute with each other, and f = f1 · · · fk. We call these
functions fi the one-bump factors of f , and we refer to the signed orbitals
(Ai, fi) as the factor signed orbitals associated to f .

The split group S(G) associated to the group G ≤ PL+(I), introduced in
[3], is the group generated by the one-bump factors of all of the elements of
G. If G = S(G), then we say that the group G is split. Note that G is a
subgroup of S(G), and whenever G is a subgroup of another group H, then
S(G) ≤ S(H). It is immediate from the chain rule that the slope group of
S(G) is also the slope group of G; that is, ΠS(G) = ΠG. In [10, Lemma 5.5],
Golan shows that S(S(G)) = S(G) for any subgroup G of Thompson’s group
F ; her proof also extends to any subgroup G of PL+(I).

We record the following result of the first author for use in Section 4.

Theorem 2.5. [3, Cor. 4.6] Suppose that G is a subgroup of PL+(I). The
derived length of G equals the derived length of S(G).

2.4. Balance and controllers for chainless groups. Suppose a < d ∈
[0, 1]. If g ∈ PL+(I) has an orbital of the form (a, b) or (c, d) where a < b ≤ d

and a ≤ c < d then we say g realises an end of (a, d). If there are both b

and c so that a < b ≤ c < d and g has orbitals (a, b) and (c, d) then we say

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 9

g realises both ends of (a, d). Finally, if g has orbital (a, d), then we say g

realises (a, d) (and in this last case we also say that g realises both ends of
(a, d)).

Theorem 2.6 (Brin’s Ubiquity Theorem [6]). If a group H ≤ PL+(I)
contains an element that realises exactly one end of an orbital of H, then H

contains a subgroup isomorphic to R. Thompson’s group F .

Let H be a subgroup of PL+(I) with orbital A. If whenever h ∈ H

realises one end of A, then h also realises the other, we say A is balanced for
H. The group H is balanced if for every G ≤ H and every orbital A of G,
the orbital A is balanced for G.

The following lemma will be used in the proof of Theorem 4.4.

Lemma 2.7. If H ≤ PL+(I) is chainless then H is balanced.

Proof. Suppose to the contrary that H is chainless but not balanced. Then
there is a subgroup G of H, an orbital (a, b) of G, an element g of G, and an
orbital (c, d) of g such that a ≤ c, d ≤ b, and exactly one of the equations
a = c or b = d holds. Suppose that a = c (the proof in the other case is
similar). Then d ∈ (a, b) so there is another element h of G with d ∈ Supp(h);
let B be the orbital of h containing d. Then the signed orbitals ((c, d), g)
and (B,h) form a complex overlap, and so Lemma 2.4(1) shows that G, and
hence H, is not chainless, giving the required contradiction. �

Suppose that H ≤ PL+(I) is a chainless group with a single orbital A.
Since H is balanced, A cannot satisfy Brin’s Ubiquity condition. Following
the discussion of [3, Section 3], a controller of H over A is an element

c ∈ H realising A and satisfying the property that H = 〈c, H̊A〉, where H̊A

is the subgroup of H consisting of all elements g ∈ H for which there is
a neighbourhood in A of the ends of A upon which g acts as the identity.
Lemma 2.7 together with [3, Lemma 3.12], show that H must have a (not
necessarily unique) controller c over A. Moreover, given h ∈ H, there is a

unique integer k and h̊ ∈ H̊A so that h = ckh̊. In the algorithm in the proof
of Theorem 4.4, we construct elements that are controllers for groups H and
orbitals A arising in Step 3a of that algorithm.

3. Transition chains in finitely generated non-soluble

subgroups

In this section we prove Theorem 3.1. Applying results established in
Section 2.2, it remains to show that every finitely generated nonsoluble
subgroup of PL+(I) admits a transition chain (that is, the implication (1) ⇒
(2)). The motivating idea for our proof is that if specific orbits of breakpoints
of the generators intersect the topological support of deep enough derived
subgroups, then the breakpoint orbits must interleave in such a way as to
give rise to a transition chain. Thus, we can argue that when passing into

10 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

derived subgroups, after at most |BX | such passages, we run out of orbits
(and so the group is soluble as all remaining elements must trivial).

Theorem 3.1. Let G < PL+(I) be generated by a finite set X. The fol-
lowing are equivalent.

(1) G is not soluble.
(2) G admits a transition chain.
(3) G admits a one-sided overlap.
(4) G admits a tower of infinite height.

Moreover, if G is soluble, the derived length of G is less than or equal to the
cardinality of the set BX of breakpoints of elements of X.

Proof. Let G = 〈X〉 be a finitely generated subgroup of PL+(I). Lemma 2.4
shows that (3) ⇔ (2) ⇒ (4), and the implication (4) ⇒ (1) follows imme-
diately from Theorem 2.3. It remains to show (1) ⇒ (2) and the claim on
derived length.

Suppose that G chainless. Let n ∈ N so that n− 1 is equal to the number
of G-orbits of the set of breakpoints of G (a finite number by Lemma 2.2).
Suppose that G is either non-soluble or of derived length z for some z ≥ n.

We note in passing that we may assume n > 1, since if n = 1 then G

has no breakpoints, and so G = {1} and hence the derived length of G is 0,
which does not exceed the number 0 of G-orbits in the set BG of breakpoints
of elements of G.

Theorem 2.3 implies that G admits a tower

T = {(A1, g1), (A2, g2), . . . , (An, gn)}

of height n, which by Lemma 2.4(3) is exemplary, and hence we may assume
that the signed orbitals of T are indexed in such a fashion that for all indices
i < n we have Ai+1 ⊂ Ai. (In the case that G is non-soluble, G admits towers
of arbitrary height by Theorem 2.3.)

The endpoints of Ai might not be breakpoints of gi; that is, gi may have
a disjoint orbital with the same endpoint and the same slope for gi in a
neighbourhood of that endpoint. To take this into account, we widen the
interval that we consider, as follows. There is a maximal ki ∈ N such that
there is an ordered tuple Xi of signed orbitals

Xi = ((Ai1, gi), (Ai2, gi), . . . , (Aiki , gi)),

where we write Aij = (aij , bij), satisfying the properties that for each index
j < ki we have bij = ai(j+1) and there is an index mi with Ai = Aimi

.

Since G is chainless, Lemma 2.4(1) shows that G does not admit com-
plex overlaps. From the fact that each Aij shares an end with each of its

‘neighbours’ in Xi, and Aimi
= Ai ⊂ Ai−1 for i > 1, we deduce that for

1 < i < n and 1 ≤ j ≤ ki we have Aij ⊂ Ai−1 since otherwise G would
admit a complex overlap.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 11

Now, for each index 1 ≤ i < n, let ci = a(i+1)1 and di = b(i+1)ki+1
, and let

ai = aimi
and bi = bimi

. Furthermore, set cn to be some breakpoint of gn in
An (such must exist since gn cannot be affine over An). We do not define
dn. If 1 ≤ i < n it is now the case (by the maximality of ki+1) that ci and

di are breakpoints of the element gi+1, and that (ci, di) ⊂ Ai.

As n is larger than the number of orbits of breakpoints of G under the
action of G, there are indices r < s so that cr and cs are in the same G-
orbit. Hence there is an element g ∈ G such that cr · g = cs ∈ As. In
particular, by Lemma 2.1 and the nonexistence of complex overlaps we see
that for each index j the interval A(r+1)j ·g is an orbital of ggr+1 with closure
properly contained in As away from the ends of As. In particular, we have
(cr, dr) · g ⊂ As. The above implies the following chain of relationships.

cr ≤ ar+1 ≤ as < cr · g = cs < dr · g < bs ≤ br+1 ≤ dr.

This means that g moves cr to the right across as, while also moving dr to
the left across bs. However, any given orbital of g has all of its points moved
in the same direction by g, so g must have at least two distinct orbitals,
one orbital (x, y) containing as and another containing bs. Consequently,
we have that x < as < y < bs and so {((x, y), g), ((as , bs), gs)} is a transition
chain for G. Since G is chainless, this gives a contradiction, so we can
conclude that G is indeed soluble with derived length z less than or equal to
the number of G-orbits of the set of breakpoints of G. Lemma 2.2 completes
the proof. �

Note that the hypothesis that G is finitely generated is not required for the
equivalence of (2) and (3), and that these two conditions could be replaced
by the single condition: “G admits a complex overlap”.

4. An algorithm to detect solubility

The goal of this section is to use Theorem 3.1 and the concept of con-
trollers from Section 2.4 to construct the algorithm to solve the soluble
subgroup recognition problem for the proof of Theorem 4.4.

Let C ≤ PL+(I). In order to input a finite list of elements of C into
our procedure, we need to be able to write these elements with some sort of
data structure; for example, if C is R. Thompson’s group F , we may input
an element as a list of numerators and denominators of the breakpoints and
slopes of the homeomorphism, since all of these are rational numbers, but we
may instead input the element as a word over a finite generating set for F , as
a tree pair diagram, or as any other construct that encodes this information.
For whatever structure is used, there are several pieces of information we
need to be able to calculate from this data, which we list in the following
processes. Some of these processes are required to hold for the (potentially
larger) split group S(C) (see Section 2.3 for this construction).

12 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

Processes:

(1) Given g, h ∈ S(C) determine gh and g−1.
(2) Given g ∈ C, determine its set of breakpoints Bg.
(3) Given g ∈ S(C) and a breakpoint or orbital endpoint x of S(C),

compute x · g.
(4) Given two points a, b ∈ [0, 1] that occur either as breakpoints or

as orbital endpoints of elements of S(C), determine whether a < b,
a = b, or a > b.

(5) Given g ∈ S(C), produce the finite tuple Xg = [A1, A2, . . . , Akg] of
all orbitals of g, where each Ai is stored as the ordered pair (ai, bi) =
(inf(Ai), sup(Ai)), and a1 < a2 < . . . < akg .

(6) Given a signed orbital (A, g) associated with S(C), output the factor
signed orbital (A,h) satisfying h|A = g|A and Supp(h) = A.

(7) Given a signed orbital ((a, b), g) of S(C), determine the slopesmga :=
ag′+ and mgb := bg′− of the affine components of the graph of g over
(a, b) near a and b respectively.

(8) Given two elements m1,m2 of the slope group ΠC = ΠS(C) of C,

compute m1m2 and m−1
1 , and determine whether or not m1 < m2,

m1 = m2, or m1 > m2.
(9) Given a finite set Z = {m1,m2, . . . ,mk} of positive numbers in ΠC =

ΠS(C), determine if the multiplicative group ΠZ := 〈m1,m2, . . . ,mk〉 ≤
R∗
+ is discrete. If this group ΠZ is discrete, further determine inte-

gers p1, p2, . . ., pk so that ΠZ,s := m
p1
1 m

p2
2 · · ·mpk

k is the least value
in ΠZ greater than one.

We say that a subgroup C ≤ PL+(I) is a computable group if the elements
of C have representatives for which this list of processes can be carried out
by a computer.

For a subgroup C of PL+(I), if the sets of breakpoints, orbital endpoints
and slopes of affine components of graphs of elements of C are sufficiently
specialised sets of values, then these processes can be performed. We observe
that all of the processes above can be carried out for elements in R. Thomp-
son’s group F by a modern computer. In particular, since breakpoints of
elements of F all lie in the rationals, orbital endpoints for elements of F
are also rational, and so the breakpoints and orbital endpoints of elements
of S(F) are rational as well; hence the processes involving S(F) can be
performed. For the most complex process, namely Process 9, one uses a
generalised Euclidean Algorithm on the log base two values of the sets of
slopes to determine the integers pi in this case. Hence F is computable.

We also note that any subgroup of a computable group is computable.
For the algorithm we provide below, we actually work in subgroups of the
split group S(G) of our original computable group G. As a consequence the
following corollary and lemma will be applied several times. Corollary 4.1
follows immediately from Theorems 2.5 and 3.1, and the fact that whenever

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 13

H1 is a subgroup of a group H2, the derived length of H1 is at most the
derived length of H2.

Corollary 4.1. Let G be a subgroup of PL+(I), and let H be a subgroup of
the split group S(G) containing G.

(1) The derived length of G equals the derived length of H.
(2) If H admits a complex overlap, then G also admits a complex overlap

and G is not soluble.

We will also apply the following lemma in the proof of Theorem 4.4.

Lemma 4.2. Let G ≤ PL+(I). Suppose that (A1, g1), ..., (Aq , gq) are factor
signed orbitals associated to elements of G.

(1) If A1 = · · · = Aq and if p1, ..., pq are any integers, then the one-bump
factors of gp11 · · · g

pq
q are also one-bump factors of an element of G.

(2) If A1 ⊂ A2, then the conjugate g
g2
1 is also a one-bump factor of an

element of G.

Proof. Let ĝ1, ..., ĝq be elements of G such that (Ai, gi) is an associated factor
signed orbital of ĝi for each i.

First suppose that A1 = · · · = Aq and p1, ..., pq ∈ Z, and let c :=
g
p1
1 · · · g

pq
q . Let ĉ := ĝ

p1
1 · · · ĝ

pq
q . Then since gi|A1

= ĝi|A1
for all i, and each

gi|Ai
is a homeomorphism of the interval Ai, we have c|A1

= ĉ|A1
. Hence the

one-bump factors of c are exactly the one-bump factors of ĉ whose support
is contained in the interval A1.

Next suppose that A1 ⊂ A2. By Lemma 2.1, the support of the conjugate
g
g2
1 is the interval A1 · g2. Since g2 acts as a homeomorphism of the interval
A2 and fixes the rest of I \A2, then A1 · g2 ⊆ A2. Similarly the conjugation
action of ĝ2 on ĝ1 takes the signed orbital (A1, ĝ1) to the signed orbital

(A1 · ĝ2, ĝ
ĝ2
1). Since ĝ2|A2

= g2|A2
, then A1 · ĝ2 = A1 · g2 and on this interval

the functions ĝĝ21 and g
g2
1 agree. Thus gg21 is a one-bump factor of ĝĝ21 . �

While Corollary 4.1 and Lemma 4.2 are used toward determining when
the input group G is not soluble, the following lemma will be used toward
determining when G is soluble.

Lemma 4.3. Suppose that H < PL+(I) is generated by a finite set Z of
one-bump functions with fundamental domains, and let SZ be the set of
signed orbitals associated to the elements of Z. Then H is a soluble group,
and the derived length of H is the largest height of a tower of signed orbitals
contained in the set SZ .

Proof. Let n be the largest height of a tower of signed orbitals that are
contained in SZ ; we proceed by induction on n.

If n=0, then SZ and hence Z is empty, and H is the trivial group, which is
soluble of derived length 0. If n = 1, then Properties Z1-Z2 of the definition

14 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

of a set of one-bump functions with fundamental domains (p. 4) imply that
the supports of the elements of the generating set Z are pairwise disjoint,
and so the elements of Z commute. Therefore H is abelian, and so H is
soluble with derived length 1.

Now suppose that n > 1 and the result is true for finite sets satisfying
Properties Z0-Z3 with maximum associated tower height at most n− 1. For
each element h ∈ Z, let Ah denote the support Supp(h) (in the notation of
Property Z0) and let orbDepth(Ah) denote the maximum height of a tower
built from elements of SZ such that Ah is the smallest orbital (that is,
Ah is contained in the supports of all of the other signed orbitals in the
tower). Let Y := {h ∈ Z | orbDepth(Ah) = 1}, and for each h ∈ Y , let
Ph := {h′ ∈ Z | Ah′ (Ah}. Property Z2 implies the set Y does not contain
two elements with the same support. Then Property Z1 implies that the
elements of Y have disjoint support, and so H is the direct product of the
subgroups 〈h, Ph〉 for h ∈ Y .

Note that each subset Ph of Z satisfies Properties Z0-Z3, and its associated
signed orbitals have maximal tower height n− 1, so by induction the group
〈Ph〉 is a soluble group for each h ∈ Y , and the derived length of 〈Ph〉 is the
maximal height of a tower that can be built from signed orbitals associated
to elements of Ph.

Now Property Z3 implies that for distinct integers j the groups 〈Ph〉
hj

have disjoint support, and so the subgroup of 〈h, Ph〉 generated by these

subgroups is the direct product ⊕j∈Z〈Ph〉
hj

. The conjugation action of the
group Z = 〈h〉 in this direct product permutes the summands. Hence the
group 〈h, Ph〉 is a wreath product 〈h, Ph〉 = 〈Ph〉 ≀ Z. Then 〈h, Ph〉 is again
soluble. Moreover, the derived length of 〈h, Ph〉 is one more than the derived
length of 〈Ph〉; that is, it is the maximum height of a tower associated to
elements of the set {h}∪Ph. Since at least one 〈Ph〉 has derived length n−1,
this implies that some 〈Ph, h〉 has derived length n.

Putting these results together, we have H = ⊕h∈Y (〈Ph〉 ≀ Z) is a soluble
group, with derived length n. �

We are now in position to prove Theorem 4.4.

Theorem 4.4. Let C be a computable subgroup of PL+(I). The soluble
subgroup recognition problem is solvable for C; that is, there is an algorithm
which, upon input of a finite subset X of C, can determine whether or not the
subgroup 〈X〉 generated by X is a soluble group. Moreover, in the case that
the group 〈X〉 is soluble, the algorithm also determines its derived length.

Proof. Suppose C is a computable subgroup of PL+(I), and f1, f2, . . . , fm
are elements of C input to the algorithm, where m is a positive integer. Let
G := 〈f1, f2, . . . , fm〉. Then G ≤ C; hence G is also computable.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 15

Before giving the technical details of the algorithm, we begin with an
overview of our procedure. In the algorithm below, we build the tree of tow-
ers (up to conjugation equivalence of towers) for the group S(G). We apply
a breadth-first-search to the tree of nested orbitals of these towers (suc-
cessively moving left to right through all orbitals at the least depth before
moving on to orbitals with greater depth), looking for complex overlaps.

In the steps of this algorithm we maintain a finite set SO of signed orbitals
of the split group S(G). For any collection S′ of signed orbitals, there is
an associated signature group, denoted by sigGrp(S′), which is the group
generated by the signatures of the orbitals in S′. At every step the set SO
and its associated signature group will satisfy the following properties:

SO.1 Each element of SO has a signature that is a one-bump factor of an
element of G, and hence sigGrp(SO) is a subgroup of S(G).

SO.2 The signature group sigGrp(SO) contains G.

We will also maintain two disjoint sets S and U of orbitals (representing
the “seen” and “unseen” orbitals, respectively), whose union is the collection
of unsigned orbitals associated to the signed orbitals in SO. Each orbital
O will arise from Process 5, and so will be stored by the algorithm in the
format (inf(O), sup(O)); that is, by storing the endpoints of the interval O.
The orbitals in S will satisfy the properties

S .1 No pair of signed orbitals in SO whose (unsigned) orbitals lie in S

forms a complex overlap.
S .2 For every orbital A of S , there is exactly one signed orbital in SO

with A as its support; we denote this signed orbital σA = (A,hA).
S .3 For every orbital A of S , there is a point rA ∈ A such that for every

A′ ∈ S with A′ (A, the containment A′ ⊆ (rA, rA · hA) also holds.

Note that these properties imply that the set Z := {hA | A ∈ S } of sig-
natures associated to the orbitals in S satisfies conditions Z0-Z3 of the
definition of a set of one-bump functions with fundamental domains, but
properties S .1-S .3 also include a partial extension of Z0-Z3 to SO.

We further partition U into sets Top and Lower, to keep track of the order
in which orbitals will be processed. Some of the orbitals O in U and all
of the orbitals in S will be assigned an “orbital depth value” orbDepth(O),
which is a lower bound on the numerical value of the orbital depth of O
in the group sigGrp(SO); in particular, orbDepth(O) = n will mean that
the algorithm has found an exemplary tower of height n associated with
sigGrp(SO) with a signed orbital of the form (O, g) ∈ SO at the bottom.

As our computation proceeds, new (signed or unsigned) orbitals will be
added to SO and U , and in other steps element orbitals will move from
U to S or will be removed from SO or U . Our calculation will terminate
either when the algorithm detects either a complex overlap in the group
sigGrp(SO) or an orbital that is ‘too deep’, or else (soon) after all orbitals

16 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

have been removed from U , so that U = ∅. We will process the set U

carefully, keeping track of the height of towers that have been found, so that
we will be guaranteed that the algorithm will stop if it finds no complex
overlaps.

Throughout the description of the algorithm we also include proofs that
the sets SO and S have the properties SO.1,SO.2, and S .1,S .2,S .3 re-
spectively, as well as other commentary adding information about the steps
along the way. In order to distinguish between steps of the algorithm and
explanations of its validity, we number and indent the steps of the algorithm.
The remaining bulk of the proof that the algorithm is valid is provided after
all of the steps have been described.

Start of algorithm

Step 0 (Setting up the algorithm):

0.1 Let SO, U , S , Top, and Lower be empty sets. Let maxDepth := 0
and counter := 0.

(Note that S satisfies properties S .1, S .2, and S .3 here.)

0.2 For each input element fi: Apply Process 5 to compute the tuple
Xfi = [Ai1, Ai2, . . . , Aiki] of orbitals of fi. Next use Process 6 to

compute the corresponding ki signed orbitals (Aij , f̃ij) associated

to the split group S(G), where the f̃ij are the one-bump functions

associated to fi (that is, f̃ij equals fi over Aij). Add the pairs

(Aij , f̃ij) to the set SO and add the orbital parts Aij to U .

Note that since the set SO contains the set of factor signed orbitals of the
generating set X := {f1, ..., fm} of G, this set SO satisfies properties SO.1
and SO.2.

0.3 Compute the value n := |BX | (the total number of breakpoints of
elements of X) using Processes 2 and 4.

Step 1 (Building Top and Lower from U):

1.1 Check whether U = ∅. If so, then terminate the algorithm and
output “The group G is soluble with derived length maxDepth”.

1.2 Determine, using Process 4, whether or not U ∪ S , and therefore
SO, contains a complex overlap. If so, then terminate the algorithm
and output “The group G is not soluble.”

1.3 For all A,B in U : Using Process 4, determine whether Ā ⊂ B, and
if so add A to Lower.

1.4 Let Top := the complement of Lower in U .
Let counter := counter + 1.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 17

The variable counter is used to record, for use in Step 2.1, whether Step 1
has been performed more than once; after Steps 1-3 are done, the algorithm
can loop back to Step 1 again.

Step 2 (Processing the orbitals in Top to detect excessive depth):

2.1 If counter = 1, then for all orbitals A ∈ Top, assign the value
orbDepth(A) := 1. Otherwise, if counter > 1, then for each or-
bital A ∈ Top, assign the value orbDepth(A) := 1+ the number of
orbitals in S that contain A. (This requires Process 4.)

2.2 Compute maxDepth := max({orbDepth(A) | A ∈ Top}∪{maxDepth}).
If maxDepth > n, terminate the algorithm and output “The group
G is not soluble.”

Note that since this maximum is taken with the old value of maxDepth
included, successive occurrences of Step 2.2 cannot decrease the value of
maxDepth.

Step 3 (Processing the leftmost element of Top):

3.1 Among the orbitals in Top with the smallest value of orbDepth, find
the leftmost orbital (via Process 4), which we denote (a, b) through-
out this step.
Let Y = {g1, g2, . . . , gq} be the set of signatures associated to the
signed orbitals of SO whose orbital is (a, b).

(The current occurrence of Step 3.1 is the start of the next step in our
breadth-first-search.)

Step 3a (Building a local controller c over (a, b)):

3.2 For 1 ≤ i ≤ q: Compute the slopes mgia := ag′+ and mgib := bg′−
(Process 7). Let MaY := {mga | g ∈ Y } and MbY := {mgb | g ∈ Y } .

3.3 Determine whether each of the groups ΠMaY
= 〈MaY 〉 and ΠMbY

=
〈MbY 〉 is discrete (Process 9). If either of these groups is not discrete,
terminate the algorithm and output “The group G is not soluble.”

3.4 Using Process 9 again, compute integers p1, p2, . . . , pq such that
m

p1
g1am

p2
g2a · · ·m

pq
gqa is the least real number ΠMaY ,s greater than 1

in the group ΠMaY
. Compute the element c := g

p1
1 g

p2
2 . . . g

pq
q . (Pro-

cess 1).

Note that by construction, c has an orbital with a at its left endpoint.

3.5 Determine whether the orbital of c with left endpoint a and the
orbital (a, b) of Top form a complex overlap (Processes 5 and 4). If
so, then terminate the algorithm and output “The group G is not
soluble.”

18 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

3.6 Compute the slope mcb := bc′− of c at the right endpoint b of the
orbital (a, b) using Process 7. Also compute the least real number
ΠMbY ,s greater than 1 in the group ΠMbY

(Processes 9 and 8). If
mcb 6= ΠMbY ,s, then terminate the algorithm and output “The group
G is not soluble.”

3.7 For 1 ≤ i ≤ q: By iterating over successively larger positive and
negative integers k, computing ck (Process 1) and its slope a(ck)′+
to the right of a (Process 7), and comparing this slope to mgia (Pro-
cess 8), find the unique integer lia such that the slope mgia is equal
to the slope a(clia)′+. If b(c

lia)′− is not equal to mgib, then terminate
the algorithm and output “The group G is not soluble.”

(Note that the justification for the outputs of Steps 3.3, 3.6, and 3.7 is
given below after the completion of the algorithm.)

Step 3b (Altering the orbital data sets):

3.8 Add the signed orbital ((a, b), c) to SO.

Since all of the factors in the formula defining c in Step 3.4 realise the
orbital (a, b), Lemma 4.2(1) says that c is a one-bump factor of an element
of G. Hence Step 3.8 preserves properties SO.1 and SO.2 of the set SO.

3.9 For 1 ≤ i ≤ q: Calculate the element hi := gic
−lia of S(G) (via

Process 1). Use Process 5 to build the orbital tuple

Xhi
= [Bi1, Bi2, . . . , Biki]

for hi. For each orbital Bij use Process 6 to produce the factor

signed orbitals (Bij , h̃ij), where h̃ij is the one-bump function which

agrees with hi over Bij. Add the signed orbitals (Bij , h̃ij) to SO,
and add the orbitals Bij to U .

Note that we have Bij ⊂ (a, b) for all i, j. Each of the factors in the

product gic
−lia defining hi in Step 3.8 realise the orbital (a, b), and so

Lemma 4.2(1) says that each of the one-bump factors h̃ij of hi is also a
one-bump factor of an element of G. Hence Step 3.9 also preserves proper-
ties SO.1 and SO.2 of the set SO.

(Note that in both Steps 3.8 and 3.9, we may not be adding new signed
orbitals to SO each time; it may be the case, for example, that the signed
orbital already lies in SO due to other generators of G.)

3.10 For 1 ≤ i ≤ q: Determine whether gi = c (using a combination of
Processes 2, 4, 7, and 8). If not, then remove the signed orbital
((a, b), gi) from SO.

Since gi = hic
lia and hi, c ∈ sigGrp(SO) after Step 3.10 is applied, the

group sigGrp(SO) is not altered in this step. Hence SO.1 and SO.2 are
again preserved.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 19

Note that the signed orbital ((a, b), c) is now the only element of SO with
support (a, b).

Step 3c (Checking for complex overlaps beneath c):

3.11 Determine, using Procedure 4, whether or not SO contains a com-
plex overlap. If so, then terminate the algorithm and output “The
group G is not soluble.”

3.12 Compute the set Proj(a,b) of all of the signed orbitals in SO with
support in (a, b) which do not realise the orbital (a, b) (Process 4).
If Proj(a,b) = ∅, then go to Step 1.

Note that since SO has no complex overlaps (after Step 3.11), each orbital
((r, s), g) in Proj(a,b) satisfies a < r < s < b. Since c has (a, b) as its only
orbital and the slope ac′+ is greater than 1, we also have r < r · c.

3.13 Determine whether the orbitals ((r, s), g) and ((r · c, s · c), gc) form
a complex overlap; to do this, it suffices to check, using Processes 3
and 4, whether r · c < s. If so, terminate the algorithm and output
“The group G is not soluble.”

Note that if the algorithm continues after Step 3.13, then since x·c > x for
all x ∈ (a, b), we have that each ((r, s), g) ∈ Proj(a,b) satisfies (r, s) ⊆ (r, r·c).

3.14 For each pair of elements ρ = ((r, s), g), σ = ((u, v), h) of Proj(a,b):

By iteratively computing u · ci for positive and negative integers i

(Processes 1 and 3) and comparing with r (Process 4), compute the
unique integer kρσ such that r ≤ u · ckρσ < r · c. Construct the signed

orbitals τ ′ρσ := ((u, v)·ckρσ−1), hc
kρσ−1

) and τρσ := ((u, v)·ckρσ), hc
kρσ

)
(and store them for use in later steps). Use Process 4 to determine
whether τ ′ρσ or τρσ yield a complex overlap with ρ. If so, terminate
the algorithm and output “The group G is not soluble.”

Note that continuation of the algorithm after Step 3.14 implies that one
of the following must hold:

(i) (u, v) · ckρσ = (r, s) (ii) (u, v) · ckρσ ⊂ (r, s)

(iii) (u, v) · ckρσ ⊂ (s, r · c) (iv)(u, v) · ckρσ ⊃ (r · c, s · c).

In case (iv) we have (r, s) · c−kρσ+1 = (r, s) · ckσρ ⊂ (u, v).

3.15 Determine a partial order ≺ on Proj(a,b) as follows. For each ordered
pair of elements ρ = ((r, s), g), σ = ((u, v), h) of Proj(a,b): Determine

whether v · ckρσ < s (and hence whether the unsigned orbital asso-

ciated to τρσ satisfies (u, v) · ckρσ ⊂ (r, s)), using Process 4 and the
stored τρσ. If so, we add σ ≺ ρ to the relation.
After this has been completed for all ordered pairs, determine a left-
most element ρ0 = ((r0, s0), g) of Proj(a,b) that is maximal with
respect to the relation ≺. (The choice of ρ0 might not be unique,

20 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

because two distinct maximal signed orbitals might share the same
support.)

To see that the relation ≺ is antisymmetric, suppose that ρ and σ are as
in Step 3.15 with ρ ≺ σ ≺ ρ. Then (r, s) · ckσρ+kρσ ⊂ (u, v) · ckρσ ⊂ (r, s),
which is impossible since c moves all points to the right on (a, b) and so
cannot conjugate an orbital in (a, b) inside itself.

From Step 3.13, we have that the support (r0, s0) of ρ0 satisfies (r0, s0) ⊆
(r0, r0 · c). From the note after Step 3.14, maximality of ρ0 implies that
every signed orbital σ = ((u, v), h) of Proj(a,b) satisfies either

(i) (u, v) · ckρ0σ = (r0, s0), (ii) (u, v) · ckρ0σ ⊂ (r0, s0), or
(iii) (u, v) · ckρσ ⊂ (s0, r0 · c).

Therefore (u, v) · ckρσ ⊂ (r0, r0 · c). That is, for every signed orbital σ ∈
Proj(a,b), the support of the signed orbital τρ0σ is contained in the interval
(r0, r0 · c).

3.16 For each element σ = ((u, v), h) of Proj(a,b): Add the signed orbital

τρ0σ to SO, and add the associated orbital (u, v) · ckρ0σ to U .

Now Lemma 4.2(1) says that powers of c are one-bump factors of elements

ofG. In Step 3.16, since (u, v) ⊆ (a, b), Lemma 4.2(2) says that the signature

hc
kρ0σ of τρ0σ is also a one-bump factor of an element of G. Therefore

Step 3.16 preserves properties SO.1 and SO.2 of the set SO.

3.17 Determine, using Procedure 4, whether or not SO contains a com-
plex overlap. If so, then terminate the algorithm and output “The
group G is not soluble.”

(Step 3.17 is not strictly necessary, since Steps 3.14 and 3.15 guarantee
that no new complex overlap is added to SO in 3.16; we include Step 3.17
to highlight the fact that SO does not contain a complex overlap in the
following steps.)

3.18 For each unsigned orbital (u, v) ∈ U such that there is an element
h ∈ PL+(I) with ((u, v), h) ∈ Proj(a,b) and (u, v) ∩ (r0, r0 · c) = ∅:
Remove all signed orbitals from SO whose associated unsigned or-
bital is (u, v), and remove the unsigned orbital (u, v) from U .

For any orbital σ = ((u, v), h) removed from SO in Step 3.18, the related

element τρ0σ with signature hc
kρ0σ (added to SO in Step 3.16) remains in SO.

Since ((a, b), c) ∈ SO as well (from Step 3.8), we have hc
kρ0σ , c ∈ sigGrp(SO),

and so h ∈ sigGrp(SO) after Step 3.18 is complete. That is, Step 3.18 does
not alter the group sigGrp(SO), and so step 3.18 preserves properties SO.1
and SO.2 of the set SO.

3.19 Remove the orbital (a, b) from U and add it to S .

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 21

Since U ∪S had no complex overlaps in Step 3.17, and no orbitals were
added to this set in the intermediate Step 3.18, then Step 3.19 preserves
property S .1. The fact that Step 3.19 preserves property S .2 of the set S

follows from the fact that Step 3.10 has been performed for the orbital (a, b)
in the current instance of Step 3, and property S .3 follows from Steps 3.13
through 3.18.

3.20 Proceed again to Step 1.

End of algorithm

It remains to show that this algorithm will terminate on every possible
input, and that when it terminates, it outputs the correct answer. We begin
with the latter.

In Step 0 of this algorithm, a set SO satisfying properties SO.1 and SO.2
is computed, and in all subsequent steps in which the set SO is changed,
namely Steps 3.8, 3.9, 3.16, and 3.18, these two properties have been shown
to be preserved. Therefore the signature group sigGrp(SO) associated to
SO satisfies G ≤ sigGrp(SO) ≤ S(G). Now Corollary 4.1(1) says that the
derived length of G equals the derived length of sigGrp(SO) throughout the
algorithm.

In all steps in which a complex overlap is found among the elements of SO,
namely Steps 1.2, 3.5, 3.11, 3.13, 3.14, and 3.17, we have that the signature
group sigGrp(SO) admits a complex overlap. Corollary 4.1(2) then shows
that G is not soluble, verifying the output of these six steps.

In Step 2.2, if maxDepth is found to be greater than the number n of
breakpoints among the finite set of homeomorphisms in the input to the
algorithm, then the algorithm has found an orbital A ∈ U that is contained
in at least n orbitals in S . Now U ∪ S is the set of unsigned orbitals
associated to the set SO of signed orbitals, and at this step we know that the
set SO contains no complex overlaps (from Step 1.2). Thus the n unsigned
orbitals in S together with A arise from n+1 signed orbitals in SO that form
a tower of height n+1, with the orbital associated to A at the “bottom”, and
so the orbital depth of A with respect to the signature group sigGrp(SO)
must be at least orbDepth(A) > n. Then Theorem 2.3 implies that the
derived length of sigGrp(SO) is at least n+1. Since G and sigGrp(SO) have
the same derived length, then G must have derived length at least n + 1.
However, Theorem 3.1 shows that if G is soluble, then its derived length
must be at most n. Hence the “not soluble” output of Step 2.2 is valid.

To show that Step 3.3 is valid, we consider the subgroup H := 〈g1, ..., gq〉
of sigGrp(SO), with the single orbital (a, b). Note that if one of the groups
ΠMaY

and ΠMbY
of Step 3.3 is not a discrete group, then that group is neither

the trivial group nor isomorphic to Z. Lemmas 3.10 and 3.11 of [3] show that
in this case the group H is not balanced. Lemma 2.7 then H is not chain-
less, and so by Theorem 3.1, H is not soluble. Thus the group sigGrp(SO)

22 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

contains a nonsoluble subgroup, and so also is nonsoluble. Therefore G is
not soluble, as required.

Suppose next that the conditions of Step 3.6 hold, namely that the slope
mcb = bc′− of c in a neighborhood to the left of b satisfies mcb 6= ΠMbY ,s,
where ΠMbY ,s is the least number greater than 1 in the discrete group
ΠMbY

. Since the algorithm did not terminate at Step 3.5, the element c

of sigGrp(SO) cannot have a fixed point in the interval (a, b), and since its
slope ac′+ on the right at a is greater than 1, we must have bc′− > ΠMbY ,s.

Let d be the element of sigGrp(SO) defined by d := g
p̃1
1 · · · g

p̃q
q . Then the

support of d lies in (a, b), and the slope bd′− of d from the left in a neighbor-
hood of the endpoint b is the number ΠMbY ,s. If d has a fixed point in the
interval (a, b), then the group sigGrp(SO) has a complex overlap. On the
other hand, if d does not have a fixed point in (a, b), then the slope ad′+ of d
from the right at a must be greater than 1, and so is greater than or equal
to the slope ΠMaY ,s = ac′+ of c at a. Now the element cd−1 of sigGrp(SO)
has an orbital of the form (a′, b) for some a < a′ < b, and so sigGrp(So)
again admits a complex overlap. Theorem 3.1 says that sigGrp(SO) is not
soluble in both cases, and so G also is not soluble. This verifies the output
of Step 3.6.

Next suppose that the condition of Step 3.7 holds; that is, suppose that
there is an index i such that lia 6= lib. Let d := gic

−lia . Then d ∈ sigGrp(SO),
the support of d is a subset of (a, b), and d fixes an open neighborhood of a.
However, the slope bd′− of d at b from the left is not 1. Therefore sigGrp(SO)
again admits a complex overlap, and so G is not soluble, so Step 3.7 is also
valid.

The last output step left to check is the only step that outputs that the
group G is soluble, namely Step 1.1. Suppose that the set U is found to
be empty in an occurrence of Step 1.1. If counter = 0, and so the algorithm
terminates at the first occurrence of Step 1.1, then G is the trivial group, and
the algorithm correctly outputs the value 0 for the derived length. On the
other hand, suppose that counter > 0, and so this the algorithm terminates
at a later occurrence of Step 1.1. From Steps 0.1 and 3.19, we know that the
unsigned orbitals in the set S satisfy properties S .1, S .2, and S .3. Thus
the set Z := {h | (A,h) ∈ SO} is a finite generating set of sigGrp(SO) that
satisfies properties Z0-Z3 of the definition of a set of one-bump functions
with fundamental domains. Lemma 4.3 says that the group sigGrp(SO) is
soluble, with derived length equal to the height of the largest tower that
can be formed from orbitals in the set SO. The algorithm adds unsigned
orbitals in order of containment (larger intervals before smaller), and so the
value of maxDepth from the last instance of Step 2.2 will be the derived
length of sigGrp(SO). Again using the fact that G and sigGrp(SO) have the
same derived length, this shows that the output of Step 1.1 is valid.

Finally we turn to the proof that the algorithm will terminate on all
possible inputs. In Step 0.2 of the algorithm, the set SO is built from the

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 23

one-bump factors of the finite set {f1, ..., fm} of input functions, and the
finite set U of associated unsigned orbitals is created. The only step in
which the set U is altered is Step 3; in particular, Steps 3.9, 3.16, and 3.18.
Each time Step 3 is performed, an orbital of smallest value of orbDepth is
removed from U , as well as possibly some others of greater orbital depth,
and a finite (possibly zero) number of orbitals of strictly larger depth are
added to U . After a finite number of iterations of Step 3, then, the least
value of orbDepth of an element of U must increase or else U must become
empty. In the case that the group G = 〈f1, ..., fm〉 is soluble this implies
that U must eventually be empty after a finite number of occurrences of
Step 3, causing the algorithm to terminate at Step 1.1. In the case that
G is not soluble, this means that either the algorithm must halt in one of
Steps 1.2, 3.3, 3.6, 3.7, 3.11, 3.13, 3.14, or 3.17, or else after a finite number
of steps the smallest value of orbDepth among the elements of Top ⊆ U is
greater than the number n of breakpoints of the fi input functions, causing
the algorithm to terminate at Step 2.2. �

Remark 4.5. In the proof of Theorem 4.4, every element of S(G) involved
in the computations throughout the procedure can be shown to be the one-
bump factor of an element of G, using Lemma 4.2. If the algorithm stores
the element of G with each of these one-bump factors, then in each appli-
cation of Processes 1-9, it is possible for the algorithm instead to perform
the procedure with the corresponding elements of G, and then apply Pro-
cess 6, in order to accomplish the process for the element of S(G). At some
potential cost in efficiency, then, Theorem 4.4 also holds for groups C ad-
mitting Processes 1-9 in which the group S(C) is replaced by C in each of
the process statements.

We note that it may be possible to make this algorithm more efficient;
in particular, some repeated steps may be streamlined. It is of interest to
consider whether a different strategy for choosing the element of Top to
consider in the next occurrence of Step 3.1, for example with a depth-first-
search instead, would improve efficiency. We also note that the algorithm
can be made parallel in various ways, for example by processing all elements
of least orbDepth value in Top simultaneously, while the sets SO, U , and
S and the value maxDepth are treated as global objects in shared memory.

We also note that if a finite generating set X of a split soluble group G

is input to the algorithm in Theorem 4.4, then at the time the algorithm
terminates (at an instance of Step 1.1), the set X ′ of signatures of the
elements of SO satisfies the properties that G = 〈X ′〉 (since SO.1-SO.2 hold
and so G = S(G) = sigGrp(SO)) and X ′ is a set of one-bump functions with
fundamental domains (since S = SO and properties SO.1 and S .1-S .3
hold). Hence the following is immediate from the algorithm of Theorem 4.4.

Corollary 4.6. Let C be a computable subgroup of PL+(I). There is an
algorithm which, upon input of any finite generating set of a soluble subgroup

24 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

H of C satisfying H = S(H), outputs a finite set of one-bump functions with
fundamental domains that generate H.

Next, we turn to the solution of the membership decision problem for
finitely generated soluble subgroups of computable subgroups of PL+(I)
that are generated by a finite set of one-bump functions with fundamental
domains.

Corollary 4.7. Let C be a computable subgroup of PL+(I). Let H be a
subgroup of C generated by a finite set of one-bump functions with funda-
mental domains. Then the membership decision problem is solvable for H;
that is, there is an algorithm which, upon input of an element w of C, can
determine whether w ∈ H.

Proof. Let Z be the finite set of one-bump functions with fundamental do-
mains generating H. For each h ∈ Z, we replace h by h−1, if necessary, so
that we may assume that the slope mha = ah′+ of h at the left endpoint
a = inf Supp(h) of its support satisfies mha > 1.

We first show that H is equal to the split group S(H). Following the
notation of the proof of Lemma 4.3, let n be the largest height of a tower
in the set SZ = {(Ah, h) | h ∈ Z} (where Ah = Supp(h)) of signed orbitals
associated to the elements of Z. If n = 0, then Z is empty and S(H) =
H = 1 is the trivial group. If n = 1 then the elements of Z have disjoint
support, H is the free abelian group generated by the elements of Z, and
again S(H) = H. Now suppose that n > 1 and the result holds for finite sets
of one-bump functions with fundamental domains with maximum associated
tower height at most n − 1. Suppose that g′ is any one-bump factor of an
element g ∈ H. Recall from the proof of Lemma 4.3 that H = ⊕h∈Y (〈Ph〉≀Z)
where Y = {h′ ∈ Z | orbDepth(Ah′) = 1} is the set of elements of minimal
orbital depth in Z, and such that for each h ∈ Y the set Ph := {h′ ∈ H |
Ah′ (Ah} is the set of elements of Z whose support is properly contained in
the support Ah of h. Since the support of the group H is ∪h∈YAh, we have
Supp(g′) ⊆ Ah for some h ∈ Y . Now the element g ∈ 〈Z〉 is a product of an
element g̃ of 〈h, Ph〉 = 〈Ph〉 ≀ 〈h〉 with an element of 〈Z \ ({h} ∪ Ph)〉 whose
support does not intersect Ah. Moreover, g̃ is another element of H that

has g′ as a one-bump factor. We can write g̃ = ĝhk for some ĝ ∈ ⊕j∈Z〈Ph〉
hj

and k ∈ Z. Moreover, ĝ can be written as a product of elements of a finite

subset Q of ∪j∈Z(Ph)
hj

that is a set of one-bump functions with fundamental
domains with maximum associated tower height at most n−1. If k = 0 then
g′ is a one-bump factor of g̃ = ĝ ∈ 〈Q〉, and so g′ is an element of the split
group S(〈Q〉). By the inductive assumption above, S(〈Q〉) = 〈Q〉; hence in
the k = 0 case, g′ ∈ 〈Q〉 < H. On the other hand, if k 6= 0, then since the

supports of the elements in ∪j∈Z(Ph)
hj

do not share an endpoint of Ah, the
support of g̃ includes intervals with endpoints that are the endpoints of Ah.
Since H is soluble (Lemma 4.3), Theorems 3.1 and 2.5 show that S(H) does
not admit a complex overlap, and so we have Supp(g̃) = Ah. In this case g̃

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 25

is already a one-bump function, and so g′ = g̃. Thus again we have g′ ∈ H.
Hence S(H) = H, as claimed.

Next we note that upon input of the set Z to the algorithm of Theorem 4.4,
no orbitals are added or removed from the set SO after Step 0.2, and the
algorithm will terminate at an instance of Step 1.1, with SO = S = SZ ,
and output the derived length n of H.

Finally we are ready to give the MDP algorithm. Input the set Z ∪ {w}
to the SSRP algorithm of Theorem 4.4. At step 0.2, the algorithm will
place the signed orbitals of the one-bump factors of w into the set SO; since
S(H) = H, these factors lie in H iff w lies in H. Proceeding through the
algorithm, if at any time the SSRP algorithm outputs “The group G is not
soluble” or “The group G is soluble with derived length m” where m is
greater than the derived length n of H, then the present (MDP) algorithm
outputs “The element w is not in H”. For the rest of this proof we assume
that the eventual output of the SSRP algorithm (with input Z ∪ {w}) is
“The group G is soluble with derived length n”.

The MDP algorithm uses a slight restriction on Step 3 of the SSRP pro-
cedure, to ensure that no signed orbital associated to an element of Z is
removed from the set SO. Each time that the SSRP algorithm reaches
Step 3.1, since Z ⊆ SO, the breadth-first-search structure of the SSRP al-
gorithm, processing intervals of least orbital depth first, guarantees that for
all h′ ∈ Z satisfying Ah′) (a, b), Step 3 has already been performed for
the interval Ah′ . Also condition Z2 for the set Z implies that the set Y

of elements of SO with support (a, b) contains at most one element of Z.
Suppose first that Y does not contain any element of Z; that is, all elements
w′ of Y are derived from w via earlier Steps 0.2, 3.9, and 3.16 of the SSRP.
Then the group 〈Z ∪ {w}〉 contains a subgroup 〈Y 〉 not in 〈Z〉, and so the
MDP algorithm halts and outputs “The element w is not in H”. Next sup-
pose that Y = {h} is a singleton set whose element h is in Z. Then the
only substep of Step 3 that has an effect is Step 3.19, moving the orbital
Ah = (a, b) from U to S ; then the SSRP algorithm returns to Step 1. Fi-
nally suppose that Y contains an element h of Z and |Y | > 1. If the slope
mha of the element h at a does not equal the slope ΠMaY

in the subsequent
occurrence of Step 3.4, then the group of slopes at a of signed orbitals with
support (a, b) for 〈Z ∪ {w}〉 does not equal the same slope group for 〈Z〉,
and so we stop and output “The element w is not in H”. Otherwise, we can
take c = h in this round of Step 3.4. Continuing with Step 3, in Steps 3.9
and 3.10 the orbital associated to each w′ ∈ Y \ {h} in SO is replaced by
signed orbitals of one-bump factors of a product of w′ with a power of h,
and in Steps 3.16 and 3.18 these orbitals may be replaced again by orbitals
associated to conjugation of the signatures by a power of h. Again using
S(H) = H, we have w′ ∈ H iff these (conjugates of) factors lie in H. Again
in Step 3.19 the orbital Ah = (a, b) is moved from U to S , and then the
SSRP algorithm returns to Step 1.

26 COLLIN BLEAK, TARA BROUGH, AND SUSAN HERMILLER

Continue through the SSRP procedure and repeat the above process for
all instances of Step 3. When the SSRP algorithm terminates, the MDP
algorithm outputs “The element w is not in H” unless the SSRP algorithm
terminates at an instance of Step 1.1 with SO = S = SZ , in which case the
output is “The element w is in H”. �

Finally, combining the algorithms in Corollaries 4.6 and 4.7 shows that
membership in finitely generated split soluble subgroups of computable
groups is uniformly solvable.

Corollary 4.8. Let C be a computable subgroup of PL+(I). There is an
algorithm which, upon input of an element w of C and a finite subset X of
C generating a split soluble group, can determine whether w ∈ 〈X〉.

References

1. Thompson’s group at 40 years, Preliminary Problem List, 2004, available at
http://www.aimath.org/WWN/thompsonsgroup/thompsonsgroup.pdf.

2. James Belk and Francesco Matucci, Conjugacy and dynamics in Thompson’s groups,
Geom. Dedicata 169 (2014), 239–261. MR 3175247

3. Collin Bleak, An algebraic classification of some solvable groups of homeomorphisms,
J. Algebra 319 (2008), no. 4, 1368–1397. MR 2383051 (2008k:20070)

4. , A geometric classification of some solvable groups of homeomorphisms, J.
Lond. Math. Soc. (2) 78 (2008), no. 2, 352–372. MR 2439629 (2009g:20069)

5. , A minimal non-solvable group of homeomorphisms, Groups Geom. Dyn. 3
(2009), no. 1, 1–37. MR 2466019 (2010d:20049)

6. Matthew G. Brin, The ubiquity of Thompson’s group F in groups of piecewise linear

homeomorphisms of the unit interval, J. London Math. Soc. (2) 60 (1999), no. 2,
449–460. MR 1724861 (2000i:20061)

7. , Elementary amenable subgroups of R. Thompson’s group F , Internat. J. Al-
gebra Comput. 15 (2005), no. 4, 619–642. MR 2160570 (2007d:20052)

8. Matthew G. Brin and Craig C. Squier, Groups of piecewise linear homeomorphisms

of the real line, Invent. Math. 79 (1985), no. 3, 485–498. MR MR782231 (86h:57033)
9. J.W. Cannon, W.J. Floyd, andW.R. Parry, Introductory notes on Richard Thompson’s

groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256. MR MR1426438 (98g:20058)
10. Gili Golan, The generation problem in Thompson group F , 2016,

arXiv:math.GR/1608.02572.
11. V. S. Guba and M. V. Sapir, On subgroups of the R. Thompson group F and other

diagram groups, Mat. Sb. 190 (1999), no. 8, 3–60. MR MR1725439 (2001m:20045)
12. Victor Guba and Mark Sapir, Diagram groups, Mem. Amer. Math. Soc. 130 (1997),

no. 620, viii+117. MR MR1396957 (98f:20013)
13. Andrés Navas, Quelques groupes moyennables de difféomorphismes de l’intervalle,

Bol. Soc. Mat. Mexicana (3) 10 (2004), no. 2, 219–244 (2005). MR MR2135961
(2006j:43006)

14. V Shpilrain and A. Ushakov, Thompson’s group and public key cryptography, ACNS
2005, Lecture Notes in Comput. Sci., vol. 3531, Springer-Verlag, New York, 2005,
pp. 151–164.

DETERMINING SOLUBILITY OF GROUPS OF HOMEOMORPHISMS 27

School of Mathematics and Statistics, University of St. Andrews, North

Haugh St Andrews, Fife KY16 9SS, Scotland

E-mail address: cb211@st-andrews.ac.uk

School of Mathematics and Statistics, University of St. Andrews, North

Haugh St Andrews, Fife KY16 9SS, Scotland

E-mail address: tarabrough@gmail.com

Department of Mathematics, University of Nebraska, Lincoln NE 68588-

0130, USA

E-mail address: hermiller@unl.edu

