
POLY-FREE CONSTRUCTIONS FOR RIGHT-ANGLED

ARTIN GROUPS

SUSAN HERMILLER1 AND ZORAN ŠUNIĆ

Abstract. We show that every right-angled Artin group AΓ defined by
a graph Γ of finite chromatic number is poly-free with poly-free length
bounded between the clique number and the chromatic number of Γ.
Further, a characterization of all right-angled Artin groups of poly-free
length 2 is given, namely the group AΓ has poly-free length 2 if and only
if there exists an independent set of vertices D in Γ such that every cycle
in Γ meets D at least twice. Finally, it is shown that AΓ is a semidirect
product of 2 free groups of finite rank if and only if Γ is a finite tree or
a finite complete bipartite graph. All of the proofs of the existence of
poly-free structures are constructive.

1. Introduction

A group G is poly-free if there exists a finite tower of subgroups

1 = G0 E G1 E · · · E GN = G

for which each quotient Gi+1/Gi is a free group. The least natural number
N for which such a tower exists is the poly-free length of G, denoted pfl(G).
A group G is poly-finitely-generated-free, or poly-fg-free, if there exists a
tower of this form with the additional property that each of the quotients
is a finitely generated free group. Since every map onto a free group splits,
a poly-free group can be realized as an iterated semidirect product of free
groups [15].

Examples of poly-fg-free groups include certain subgroups of Artin groups.
Let Γ be a finite simplicial graph; throughout the text we will assume that
such graphs do not have loops or multiple edges. If the edges of Γ are labeled
by integers greater than one, the associated Artin group AΓ has generators
corresponding to the vertices, and relations

aba · · ·︸ ︷︷ ︸
n letters

= bab · · ·︸ ︷︷ ︸
n letters

where {a, b} is an edge of the graph labeled n. If, in addition, relations are
added making each generator of order 2, the resulting quotient is a Coxeter
group. Braid groups are the Artin groups whose Coxeter quotients are the
symmetric groups. When the Coxeter quotient is finite, the Artin group is
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said to be of finite type. Pure Artin groups are subgroups of Artin groups
which are the kernel of the homomorphism onto the corresponding Coxeter
group.

Pure braid groups are examples of poly-fg-free groups [1], as are pure
finite type Artin groups whose Coxeter quotients are of type Bn, Dn, I2(p),
and F4 [5]. If the graph associated to an Artin group is a tree, Hermiller
and Meier [11] have shown that the Artin group is an extension of a finitely
generated free group by the integers, and hence is poly-fg-free. Recently,
Bestvina [3] has asked if all Artin groups of finite type, or indeed all Artin
groups of any type, are virtually poly-free.

In this paper we investigate the poly-free properties of the class of right-
angled Artin groups, which are the Artin groups for which the defining graph
has every edge labeled 2. That is, for a simplicial graph Γ, the right-angled
Artin group AΓ is the group with generators in one-to-one correspondence
with the set V (Γ) of vertices of Γ, and relations [v,w] = vwv−1w−1, for each
edge between vertices v and w of Γ. These groups are also known in the
literature as graph groups, or free partially commutative groups. (See [7],
[9], [10], [16] for information on normal forms for right-angled Artin groups
and further references.)

Our main results are as follows.

Theorem A. Let Γ be a finite graph or, more generally, a graph of finite
chromatic number chr(Γ) (and hence finite clique number clq(Γ)). The right-
angled Artin group AΓ is poly-free. Moreover,

clq(Γ) ≤ pfl(AΓ) ≤ chr(Γ),

and there exists a poly-free tower for AΓ of length chr(Γ).

During the preparation of the text, W. Dicks has pointed out to us that
J. Howie [12] has established |V (Γ)| as an upper bound for the poly-free
length of a right-angled Artin group defined by a finite graph Γ. Thus the
above result is an improvement in the case of finite graphs and a general-
ization to a class of infinite graphs.

A graph Γ is said to have the doubly breakable cycle property if Γ is not
totally disconnected and there exists a vertex subset D ⊆ V (Γ) such that
the full subgraph of Γ induced by D is totally disconnected, and such that
every cycle in Γ contains at least two vertices in D. For a graph Γ with this
property, the full subgraph generated by the vertices in V (Γ)−D is a forest;
if each of the trees in this forest is collapsed to a point in Γ, the resulting
graph is bipartite. Moreover, no vertex in D is connected by an edge to
more than one vertex in each tree of the forest V (Γ) − D. See Figure 1 for
an example of a graph with the doubly breakable cycle property. In this
example D can be taken to be D = {d1, d2, d3, d4}.

Theorem B. Let Γ be a graph. The right-angled Artin group AΓ is poly-free
of length 2 if and only if the graph Γ has the doubly breakable cycle property.
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Figure 1. An example of a graph with the doubly breakable
cycle property

We note that Theorem B is valid in the context of both finite and infinite
graphs.

Theorem B can be used to show that each of the bounds in Theorem A
is realized, as illustrated in the following two examples. First, consider the
graph C5 given by a 5-cycle (i.e. a pentagon; see Figure 2). This graph
has chromatic number chr(C5) = 3, so Theorem A shows that the group
AC5 is poly-free with poly-free length at most 3. However, the pentagon
satisfies the doubly breakable cycle property (for example, one can take
D = {a, c}). Thus Theorem B improves this bound to pfl(AC5) ≤ 2. Indeed,
since clq(C5) = 2, this group contains Z

2 as a subgroup and is not free,
so pfl(AC5) = 2. Hence the lower bound on pfl(AΓ) given by the clique
number in Theorem A is achieved in this example. Next, suppose that P5

is a pentagonal prism (see Figure 2). In this case we have the same clique
number and the same chromatic number as for the pentagon, i.e. clq(P5) = 2
and chr(P5) = 3, but P5 does not satisfy the doubly breakable cycle property.
Indeed, in a graph that satisfies the doubly breakable cycle property exactly
two non-neighboring vertices must be selected from each 4-cycle to be in
the independent set of vertices D breaking the cycles. Thus if we choose
a in D, then we must also have b′, c, d′ and e in D (the vertices indicated
by squares in the diagram of P5 in Figure 2). But a and e are neighbors,
so they cannot both be in D. This shows that a cannot be in D and, by
symmetry, no element can be in D. Since D cannot be empty P5 does not
satisfy the doubly breakable cycle property. Theorems A and B show that
pfl(AP5) ≤ 3 and pfl(AP5) 6= 2. Thus pfl(AP5) = 3 and the chromatic
number upper bound is achieved for this second example.

If a graph Γ satisfies the doubly breakable cycle property, the graph Γ can
be colored using three colors, one for the vertices in D, and two more for
the vertices in V (Γ)−D since their full subgraph is a forest. Consequently,
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Figure 2. A pentagon and a pentagonal prism

Theorem B implies that whenever a right-angled Artin group AΓ is poly-free
of length 2, then the defining graph Γ must have chromatic number at most
three.

Theorem C. A right-angled Artin group AΓ is poly-fg-free of length 2 if
and only if Γ is a finite tree or a finite complete bipartite graph.

For the right-angled Artin group AC5 discussed above, Theorem C implies
that the group AC5 is not poly-fg-free (of any length) even though it is poly-
free of length 2. Indeed, by the results of D. Meier from [14] (see also [8]) the
poly-fg-free length of a poly-fg-free group is equal to its rational homological
dimension. Since the homological dimension of AC5 is 2 (more on this later),
AC5 can only be poly-fg-free of length 2. However, C5 is neither a tree nor
a complete bipartite graph and therefore AC5 is not poly-fg-free.

Organization. Section 2 is a brief review of poly-free groups, right-angled
Artin groups, and graph theoretic terminology. In Section 3 we prove one
direction of Theorem B, that every right-angled Artin group with poly-free
length 2 has the doubly breakable cycle property, utilizing results of [16]
and [4] on finiteness properties of subgroups of right-angled Artin groups.
Section 4 contains the proof of Theorem C, utilizing a comparison of Euler
characteristics for poly-free groups and right-angled Artin groups, together
with the results of Section 3. In Section 5 an arbitrary right-angled Artin
group is exhibited as a split extension of a free group by a right-angled
Artin group on a subgraph, including an explicit description of the action,
proving Theorem A. Finally, in Section 6 we prove that for any graph with
the doubly breakable cycle property, the corresponding right-angled Artin
group AΓ is a semidirect product of two free groups, using a refinement of
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the techniques of the previous section to construct the action. This result
completes the proof of Theorem B.

2. Background

2.1. Groups. Throughout the text, ga denotes the conjugate a−1ga.
Let G = 〈S〉 be a group generated by S. A word w of length k over

S ∪ S−1 is a geodesic word if no word over S ∪ S−1 of length strictly less
than k represents the same element in G as w does. A total order defined on
S∪S−1 induces a total order, called shortlex order, on all words over S∪S−1

in which shorter words always precede the longer ones and the words of the
same length are ordered lexicographically according to the order defined on
S ∪ S−1. A shortlex representative of an element g ∈ G is the smallest
word in the shortlex order that represents g. Such a representative is, by
definition, geodesic.

2.2. Graphs. Throughout the paper, we assume that every graph is a sim-
plicial graph; that is, a simple undirected graph. Therefore a graph Γ is an
ordered pair Γ = (V,E) in which the set V = V (Γ) is a set of vertices and
E = E(Γ) is a set of edges, which is a set of two element subsets of V . An
edge {a, b} has the vertices a and b as its endpoints. Two vertices x and y
in V are neighbors (are adjacent) if {x, y} is an edge in E (so no vertex is
its own neighbor). A cycle in Γ is a path of length at least 3 in which no
vertex is repeated except for the initial and terminal one, which coincide.
The clique number clq(Γ) of a graph Γ is the largest size of a complete sub-
graph of Γ. Thus clq(Γ) is the largest size of a subset Q of V for which every
2-element subset {a, b} ⊆ Q is an edge in E. A proper coloring of a graph Γ
by C is a labelling ` : C → V of the vertices in V by symbols from a set of
colors C in such a way that no two neighbors in Γ are colored in the same
color. Thus if {a, b} ∈ E then `(a) 6= `(b). The chromatic number of a graph
Γ is the smallest size of a set C for which there exists a proper coloring of
Γ by C. A set of vertices D is independent if it can be colored by the same
color in some proper coloring of Γ. In other words, no two vertices in D are
adjacent.

2.3. Right-angled Artin groups. We freely use the following well known
observation. If Γ′ is a subgraph of Γ induced by a set of vertices X ⊆ V , then
the subgroup of the right-angled Artin group AΓ generated by the elements
of X is AΓ′.

Throughout the text, given any homomorphism φ : AΓ → G from a right-
angled Artin group to a group G, the set D := {v ∈ V (Γ) | φ(v) = 1} is
called the set of dead vertices, the set L := V (Γ) − D is the set of living
vertices, and the full subgraph ΓL generated by L is the living subgraph of
Γ, with respect to φ.
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Lemma 2.1. [2, 9] Every geodesic representative of an element t ∈ AΓ can
be obtained from any other representative of t by finite number of applications
of the following operations:

(1) Eliminate a subword of the form xx−1 or x−1x with x ∈ V (Γ).
(2) If x, y ∈ V (Γ) are adjacent in Γ, replace a single occurrence of x±y±

by y±x±.

In particular, every geodesic representative of an element t ∈ AΓL can be
obtained from any other geodesic representative of t by finite number of
applications of operation 2.

2.4. Poly-free groups. Throughout the text, when G is a semidirect prod-
uct of two free groups, we will write G = Fk o Fq with associated canonical
homomorphism φ : G → Fq, so that the rank of the kernel ker(φ) is k and
the rank of the associate quotient is q (we allow infinite ranks).

Proposition 2.2. If G is poly-free with length N and H ≤ G, then H is
poly-free with length ≤ N .

Proof. Given a poly-free tower 1 = G0 E G1 E · · · E GN = G for G, then
the tower 1 = G0 ∩ H E G1 ∩ H E · · · E GN ∩ H = H is a poly-free tower
for H. �

Proposition 2.3. If G has a normal free subgroup H and the quotient G/H
is poly-free with pfl(G/H) = N , then G is poly-free with pfl(G) ≤ N + 1.

Proof. Let φ : G → G/H be the canonical homomorphism. Given a poly-
free tower 1 = Q0 E Q1 E · · · E QN = G/H for G/H, then the tower
1 E φ−1(Q0) = H E φ−1(Q1) E · · · E φ−1(QN ) = G is a poly-free tower for
G. �

3. Poly-freeness of length 2 implies the doubly breakable

cycle property

Before proving the statement of the title of this section in Proposition 3.5,
we begin with a few lemmas.

Lemma 3.1. The group Z
n has poly-free length equal to n.

Proof. Since Z
n = Z × Z × · · · × Z︸ ︷︷ ︸

n

is an iterated direct product of n free

groups, Zn is poly-free with length at most n.
To show that Z

n cannot have poly-free length less than n, assume that
Z

n = (. . . (Fn1
oFn2

)o. . . )oFnk
, for some (finite or infinite) ni, i = 1, . . . , k.

Since Z
n is abelian, we must have n1 = n2 = · · · = nk = 1. Thus Z

n can
be generated by k elements (one for each Fni

). However, Zn cannot be
generated by fewer than n elements, which shows that n ≤ k. �

Note that Lemma 3.1 shows that the right-angled Artin group whose
graph Γ is a triangle cannot be poly-free of length 2.
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Lemma 3.2. Let Γ be a graph and let φ : AΓ → Fq be a homomorphism
with Fq a free group of finite or infinite rank. Let ΓL be the corresponding
living subgraph. If Γα is a connected subgraph of ΓL, then the subgroup
〈{φ(u)|u ∈ Γα}〉 of Fq is isomorphic to Z.

Proof. Fix a connected subgraph Γα in ΓL. The images φ(u), u ∈ Γα are
nontrivial elements in the free group Fq. Using the fact that Γα is connected
and [13, Prop. I.2.18] that says that the commuting relation is an equivalence
relation on the set of nontrivial elements in a free group, we conclude that
the group 〈{φ(u)|u ∈ Γα}〉 is abelian. However, the only abelian subgroup
of Fq is Z and the conclusion follows. �

Lemma 3.3. Let Γ be a graph with AΓ = Fk oFq for free groups Fk and Fq

of finite or infinite rank. Let φ : AΓ → Fq be the canonical homomorphism
and let D := {v ∈ V (Γ) | φ(v) = 1} be the set of dead vertices. If d ∈ D
and a1, ..., an ∈ L = V (Γ) − D are all adjacent to d, then the subgroup
〈φ(a1), ..., φ(an)〉 of Fq is free of rank n.

Proof. Suppose that there exists a nontrivial word u1 · · · um with each ui ∈
{a1, ..., an}

±1 and φ(u1) · · · φ(um) = 1. Then u1 · · · um ∈ ker(φ), and since
each ai is adjacent to d, the subgroup 〈d, u1 · · · um〉 of ker(φ) is abelian. By
hypothesis the poly-free length of AΓ is less than 3, and so Lemma 3.1 and
Proposition 2.2 show that the graph Γ cannot contain a triangle. Hence
there are no adjacencies among the vertices ai adjacent to d, and thus the
word u1 · · · um represents a nontrivial element of AΓ. Then in the abelian-
ization AΓab, the elements d and u1 · · · um generate a free abelian subgroup
of rank two, and therefore the abelian subgroup 〈d, u1 · · · um〉 of ker(φ) is
also isomorphic to Z

2. This contradicts the hypothesis that ker(φ) = Fk is
free. �

Lemma 3.4. Let Γ be a finite graph, let φ : AΓ → Z be any group homo-
morphism from AΓ to an infinite cyclic group Z = 〈z〉, and let ρ : AΓ → Z
be the homomorphism defined by ρ(v) := z for a vertex v ∈ V (Γ) if φ(v) 6= 1
and ρ(v) := 1 if φ(v) = 1. Then ker(φ) is free if and only if ker(ρ) is free.

Proof. Let D := {w ∈ V (Γ) | φ(w) = 1} and for each v ∈ V (Γ) − D, let
nv ∈ Z be the unique integer such that znv = φ(v) in Z.

First suppose that the group ker(ρ) is not free. Let N be the least common
multiple of the numbers |nv| for v ∈ V (Γ)−D. Then for each v ∈ V (Γ)−D,
there exists an integer av such that nvav = N . Define aw := 1 for each
w ∈ D. Let µ : Z → Z be the homomorphism zk 7→ zNk given by taking the
N -th power in Z. The composition µ ◦ ρ : AΓ → Z has kernel ker(µ ◦ ρ) =
ker(ρ). Define Θ : AΓ → AΓ by Θ(v) := vav for all v ∈ V (Γ); this defines a
homomorphism of groups. Moreover, the compositions φ ◦Θ = µ ◦ ρ. Hence
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ker(ρ) = ker(µ ◦ ρ) = ker(φ ◦ Θ).

AΓ
Θ

−→ AΓ
ρ ↓ ↓ φ

Z
µ

−→ Z.

Suppose that 1 6= g ∈ ker(Θ). Put a total ordering on V (Γ), and let g =AΓ

vj1
1 vj2

2 · · · vjk

k be the shortlex least representative of g with each vi ∈ V (Γ),

ji ∈ Z, and vi 6= vi+1. Then Θ(g) =AΓ v
j1av1

1 v
j2av2

2 · · · v
jkavk

k =AΓ 1. Since

g 6= 1, the word vj1
1 vj2

2 · · · vjk

k is not empty, so there must be commutation
relations such that for some indices i < m we have vi = vm, jijm < 0, and
vi commutes with vn for all i < n < m, so that cancellation occurs between

v
jiavi

i and v
jmavm
m . However, in that case cancellation must also be possible

in the normal form word vj1
1 vj2

2 · · · vjk

k , giving a contradiction. Therefore
ker(Θ) = 1.

We now have that Θ is a monomorphism, and Θ(ker(ρ)) = Θ(ker(µ◦ρ)) =
Θ(ker(φ ◦Θ)) ≤ ker(φ). Hence ker(ρ) is isomorphic to a subgroup of ker(φ).
Using the Nielsen-Schreier Subgroup Theorem, that every subgroup of a free
group is free, together with the hypothesis that ker(ρ) is not free, we have
that ker(φ) cannot be a free group.

Next suppose that ker(φ) is not free. Define the function Ψ : AΓ → AΓ by
Ψ(v) := vnv for v ∈ V (Γ)−D and Ψ(w) := w for w ∈ D. Then φ = ρ◦Ψ. An
argument similar to the proof above for Θ shows that Ψ is a monomorphism
of groups, so Ψ restricts to an isomorphism from ker(φ) to a subgroup of
ker(ρ). Since ker(φ) is not free, then ker(ρ) also cannot be free. �

Note that Lemma 3.4 is the only lemma in this section for which the
graph must be finite. In the proof of Theorem B, this lemma is applied only
to a cycle Γ′ in Γ, which is finite, and hence Theorem B is valid for both
finite and infinite graphs Γ.

Proposition 3.5. If Γ is a graph and the right-angled Artin group AΓ is
poly-free of length 2, then the graph Γ has the doubly breakable cycle property.

Proof. The group AΓ can be written as a semidirect product AΓ = Fk o Fq

where Fk and Fq are free groups of ranks k and q, respectively, and k, q ∈
N ∪ {∞}. Let φ : AΓ → Fq be the canonical surjection, with ker(φ) = Fk.
Let D be the set of vertices v in Γ with φ(v) = 1; that is, v ∈ ker(φ).

If d1 and d2 are vertices in D, then the subgroup 〈d1, d2〉 < AΓ generated
by d1 and d2 must also be contained in ker(φ). Since ker(φ) is free, the
subgroup 〈d1, d2〉 of ker(φ) is free. Hence d1 and d2 cannot be joined by an
edge in Γ. Thus the subgraph induced by D is totally disconnected, i.e., D
is an independent set of vertices in Γ.

Suppose that Γ′ is a cycle in the graph Γ. Then Γ′ contains at least 3
vertices. The subgroup AΓ′ of AΓ is again a right-angled Artin group, and
Proposition 2.2 says that AΓ′ is poly-free with length at most 2. Lemma 3.1
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says that Z
3 is not poly-free with length less than 3, so the cycle Γ′ cannot

have length 3. Thus Γ′ contains at least 4 vertices.
If V (Γ′) ∩ D contains less than two vertices, then the full subgraph of Γ′

generated by the vertices in V (Γ′)−D is connected. In this case Lemma 3.2
shows that the restriction φ|AΓ′ : AΓ′ → Fq has range 〈f〉 = Z for some
f ∈ Fq. Since ker(φ|AΓ′) < ker(φ), then ker(φ|AΓ′) is also a free group.

If V (Γ′) ∩ D = ∅, then φ(v) 6= f0 for all v ∈ V (Γ′). Define the function
ρ : AΓ′ → Z by ρ(v) = f for all v ∈ V (Γ′). Then Lemma 3.4 says that
ker(ρ) is free. Since the graph Γ′ is connected, [16, Theorem 6.3] shows that
ker(ρ) is finitely generated. The cycle Γ′ is a flag complex, since Γ′ is not a
triangle, and this flag complex is not simply connected. The Main Theorem
of [4] shows that ker(ρ) is not finitely presented. Since a free group cannot
be finitely generated but not finitely presented, we have a contradiction.

If there is exactly one vertex d in V (Γ′) ∩ D, then the images φ(a) and
φ(b) of the two neighbors a and b of d in the cycle Γ′ must generate a free
group of rank 2 in Fq (by Lemma 3.3). On the other hand, we already
established that the range of φ|AΓ′ : AΓ′ → Fq is cyclic, resulting again in a
contradiction. �

4. Poly-fg-freeness of length 2

In this section we prove Theorem C using an analysis of Euler character-
istics of right-angled Artin groups and poly-free groups.

Lemma 4.1. Let Γ be a finite graph with AΓ = Fk o Fq for free groups Fk

and Fq of finite rank. Let φ : AΓ → Fq be the canonical homomorphism,
let D := {v ∈ V (Γ) | φ(v) = 1} be the set of dead vertices, and for each
d ∈ D, let Nd denote the set of vertices adjacent to d in Γ. Then the image
of the subgroup generated by Nd under the map φ has finite index in Fq, and
k ≥

∑
d∈D[Fq : φ(〈Nd〉)] .

Proof. We begin by finding a presentation for the subgroup K := ker(φ) =
Fk of AΓ using the Reidemeister-Schreier procedure, following the notation
in [13, Proposition II.4.1]. Let F (V (Γ)) be the free group on the vertices of Γ,

let α : F (V (Γ)) → AΓ be the canonical epimorphism, and let K̃ := α−1(K).

Then F (V (Γ))/K̃ ∼= Fq. Choose a Schreier transversal T for K̃ in F (V (Γ)).
For any element y ∈ F (V (Γ)), let y denote the element of T for which

K̃y = K̃y. For t ∈ T and v ∈ V (Γ), define γ(t, v) := tvtv
−1

. Given d ∈ D
and t ∈ T , then td = t. The element dt := tdt−1 = γ(t, d) is a conjugate of a
nontrivial element in AΓ, so dt itself is not trivial. Given a ∈ L := V (Γ)−D

and t ∈ T , define at := tata
−1

= γ(t, a) as well. The subset S of nontrivial
elements in the set

S′ := {dt | t ∈ T, d ∈ D } ∪ {at | t ∈ T, a ∈ L }

generates K.
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For t ∈ T and v ∈ V (Γ), also define γ(t, v−1) := tv−1(tv−1)−1. If t ∈ T ,
d ∈ D, and a ∈ L, then γ(t, d−1) = d−1

t and γ(t, a−1) = (a
ta−1)

−1. Given

any word v = v1 · · · vm with each vi ∈ V (Γ)±1, define

τ(v) := γ(1, v1)γ(v1, v2) · · · γ(v1 · · · vm−1, vm).

Note that for each t ∈ T , since every prefix of t is also in T we have that
the element τ(t) is a product of trivial elements in S′, and hence τ(t) = 1.
For each relator r = [u, v] ∈ R it follows that

τ(trt−1) = γ(t, u)γ(tu, v)γ(tuv, u−1)γ(tuvu−1, v−1) .

The latter words form the defining relators of the presentation for K =
ker(φ). In particular, a defining set of relations is given by

R :={dtat = atdta | t ∈ T, d ∈ D, a ∈ L, {d, a} ∈ E(Γ) } ∪

{atbta = btatb | t ∈ T, a, b ∈ L, {a, b} ∈ E(Γ) }

and the group K is presented by 〈 S | R 〉.
Abelianizing this presentation yields a presentation for Kab = Z

k. The
subgroup H of Kab generated by the elements of

DT := { dt | d ∈ D, t ∈ T }

is a free abelian direct factor of Kab presented by

H = 〈 DT | {dt = dta | t ∈ T, d ∈ D, a ∈ Nd } 〉ab .

Since all relations in this presentation are equalities between generators, the
rank of H is the number of equivalence classes of generators. Note that two
generators dt and ds are equal in H if and only if there exists a sequence
of relations dt = dta1

= dta1a2
= · · · = dta1···am

= ds with s = ta1 · · · am+1

and each ai ∈ N±1
d . This holds if and only if Kta1 · · · am+1 = Ks, which

is satisfied if and only if φ(t)φ(a1) · · · φ(am+1) = φ(s). Then dt and ds are
equal in H if and only if φ(t) and φ(s) are in the same coset of φ(〈Nd〉) in Fq.
Therefore the rank of H is equal to the sum of indices

∑
d∈D[Fq : φ(〈Nd〉)].

Since the rank of Kab is k we have

k ≥ rank(H) =
∑

d∈D

[Fq : φ(〈Nd〉)].

In particular, the index [Fq : φ(〈Nd〉)] is finite for all d ∈ D. �

Theorem C. A right-angled Artin group AΓ is poly-fg-free of length 2 if
and only if Γ is either a finite tree or a finite complete bipartite graph.

Proof. If Γ is the complete bipartite graph Kk,q, then AΓ is the direct prod-
uct Fk × Fq of free groups of ranks k and q. On the other hand, if Γ is a
tree on n vertices, the Artin group AΓ is a semidirect product Fn−1 o Z [11,
Proposition 4.6].

Conversely, assume for the rest of this proof that AΓ is a poly-fg-free
group of length 2. Since AΓ is finitely generated, the graph Γ must be finite
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(since the abelianization of AΓ is Z
V , any generating set of AΓ has at least

|V | elements).
There exists a split short exact sequence

1 → Fk → AΓ
φ
→Fq → 1,

such that the ranks k and q of the free groups are finite and positive. By
Proposition 3.5, the graph Γ must satisfy the doubly breakable cycle prop-
erty. Moreover, the proof of that proposition shows that the set of dead
vertices D := {v ∈ V (Γ)|φ(v) = 1} associated to φ is an independent set of
vertices in Γ such that every cycle in Γ meets D at least twice. Since AΓ is
not poly-fg-free of length 1, the living subgraph ΓL is not empty.

Since semidirect products of free groups are torsion free, the Euler char-
acteristic of the semidirect product AΓ = Fk o Fq is given by χ(AΓ) =
χ(Fk)χ(Fq) (see [6, Proposition IX.7.3(d)]). Therefore, given that the Euler
characteristic of a free group Fr of rank r is χ(Fr) = 1 − r,

(1) χ(AΓ) = (k − 1)(q − 1) .

The Euler characteristic of a right-angled Artin group can be computed
using a K(AΓ, 1) space. The doubly breakable cycle property implies that Γ
contains edges but does not contain any triangles. In this case the standard
2-complex X associated to the standard presentation (from Section 1) of AΓ
is a K(AΓ, 1) [16, Theorem 7.3]. Thus the Euler characteristic of AΓ is also

(2) χ(AΓ) = χ(X) = 1 − v + e .

Denote the connected components of the nonempty graph ΓL by C1, . . . , Cc.
Each of these components is a tree with nj > 0 vertices, and hence nj − 1
edges, for 1 ≤ j ≤ c. Let δ := |D| and denote the degrees of the vertices
d1, . . . dδ in D by g1, . . . , gδ . Rewriting Equation (2) yields

(3) χ(AΓ) = 1 − (δ +
c∑

j=1

nj) + (
c∑

j=1

(nj − 1) +
δ∑

i=1

gi) =

= 1 − δ − c +
δ∑

i=1

gi = 1 − c +
δ∑

i=1

(gi − 1).

For each 1 ≤ i ≤ δ, let Ni denote the set of vertices adjacent to di.
Lemma 3.3 says that the subgroup φ(〈Ni〉) of Fq is free of rank equal to the
degree gi of di. Using the Schreier Formula, (rank(Fq) − 1)[Fq : φ(〈Ni〉)] =
(rank(φ(〈Ni〉) − 1), so

gi − 1 = (q − 1)[Fq : φ(〈Ni〉)].

According to Lemma 4.1,
∑δ

i=1[Fq : φ(〈Ndi
〉)] ≤ k. Thus, taking into ac-

count the non-negativity of q − 1,

δ∑

i=1

(gi − 1) = (q − 1)

δ∑

i=1

[Fq : φ(〈Ndi
〉)] ≤ k(q − 1).
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Combining this with Equation (1) and Equation (3), then

(k − 1)(q − 1)
(1)
= χ(Γ)

(3)
= 1 − c +

δ∑

i=1

(gi − 1) ≤ 1 − c + k(q − 1) ,

which implies that c ≤ q .
Lemma 3.2 says that for each component Cj , there exists an element fj

in Fq such that all vertices from the component Cj are mapped by φ to a
power of fj . Since φ is onto and the dead vertices in D are mapped to the
identity in Fq, f1, . . . , fc generate Fq, which implies that q ≤ c. Using the
inequality at the end of the previous paragraph, then

(4) q = c.

If q = c = 1, then the living subgraph ΓL of Γ is a single tree. Since the
kernel ker(φ) = Fk is finitely generated, [16, Theorem 6.1] says that every
dead vertex in D must be adjacent to a vertex in ΓL. The doubly breakable
cycle property says that there cannot be a cycle in Γ that meets a dead
vertex in D only once, which implies that for each d ∈ D, d cannot be the
endpoint of two different edges whose other endpoints lie in ΓL. Therefore
in this case the graph Γ is also a tree.

Finally suppose that q = c ≥ 2. As in the previous paragraph, the doubly
breakable cycle property says that for each di ∈ D, di cannot be the endpoint
of two different edges whose other endpoints lie in the same component Cj

of ΓL. Hence each degree gi ≤ c, so
∑δ

i=1 gi ≤ cδ. Using Equation (4),
Equation (1), and Equation (3), then

(k − 1)(c − 1)
(4)
= (k − 1)(q − 1)

(1)
= χ(AΓ)

(3)
= 1 − δ − c +

δ∑

i=1

gi

≤ 1 − δ − c + cδ = (c − 1)(δ − 1) .

Since c ≥ 2, we obtain

(5) k ≤ δ .

Note that equality holds if and only if each vertex in D has degree c; i.e.,
there exists a single edge between each vertex in D and each component of
ΓL.

Since AΓ = Fk o Fq, the group AΓ can be generated by k + q elements.
However, the minimal number of generators for the right-angled Artin group
AΓ is the number v = δ +

∑c
j=1 nj of vertices in Γ, which in turn is at least

as large as δ + c. Thus

(6) δ + c ≤ k + q .

Note that equality in this case is possible only if δ + c = v = δ +
∑c

j=1 nj =

k+q, and so c =
∑c

j=1 nj. Thus equality implies that each nj = 1; i.e., each
component Cj of ΓL is a single vertex.
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Using the fact that q = c, Inequality (5) and Inequality (6) imply that
δ = k, so equality holds both in (5) and in (6). Therefore D and L are
each independent sets of vertices in Γ, and there is an edge between each
vertex in D and each vertex in L. Thus in this case Γ is a complete bipartite
graph. �

5. Every right-angled Artin group is poly-free

Given a graph Γ with finite chromatic number greater than one, let D be
the set of vertices in one of the colors and let L := V (Γ)−D be the vertices
in the other colors. Let ΓL be the full subgraph of Γ induced by L. If we
define a homomorphism φ : AΓ → AΓL by φ(d) = 1 for d ∈ D and φ(a) = a
for a ∈ L, then D is the set of dead vertices and ΓL is the living subgraph
associated to this homomorphism. In the following proof we construct a
free group F (isomorphic to ker(φ)) and an action of AΓL on F , and exhibit
directly that AΓ is isomorphic to the semidirect product F o AΓL of a free
group with AΓL.

Theorem A. Let Γ be a finite graph or, more generally, a graph of finite
chromatic number chr(Γ) and finite clique number clq(Γ). The right-angled
Artin group AΓ is poly-free. Moreover,

clq(Γ) ≤ pfl(AΓ) ≤ chr(Γ),

and there exists a poly-free tower for AΓ of length chr(Γ).

Proof. To prove poly-freeness and the upper bound on the poly-free length,
we induct on chr(Γ). If chr(Γ) = 1, then Γ is totally disconnected, so AΓ
is free, and hence poly-free of length 1. Next suppose that chr(Γ) ≥ 2, and
that for every graph Γ′ with chr(Γ′) < chr(Γ), the group AΓ′ is poly-free
and has a poly-free tower of length chr(Γ′).

Choose a coloring of Γ in chr(Γ) colors, one of which is gray. Let D be the
set of vertices in V = V (Γ) colored in gray, L = V −D be the set of vertices
colored in a different color, ΓL be the subgraph of Γ induced by L and AΓL

be the corresponding right-angled Artin group. Then chr(ΓL) = chr(Γ) − 1
and the inductive assumption implies that there exists a poly-free tower for
AΓL of length chr(Γ) − 1.

In the discussion that follows, a geodesic representative of an element t ∈
AΓL means a geodesic word in the alphabet L±1. For any vertex v ∈ V (Γ),
denote by Nv the set of vertices adjacent to v; i.e., the neighbors of v. For
each d ∈ D, define a set of symbols

Td := { dt | t ∈ AΓL, no geodesic rep. of t starts with a letter in N±1
d }.

Let F (Td) be the free group over Td and let F be the free group

F := ∗d∈DF (Td).
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For each generator a ∈ L, define an endomorphism αa : F → F by

(7) αa(dt) :=

{
dta, dta ∈ Td

dt, dta 6∈ Td

,

for all d ∈ D and dt ∈ Td. Since F is a free group, this definition of αa on
the generators of F extends to an endomorphism on F . In order to show
that a 7→ αa extends to an action of AΓL on F , we first need to consider
when the conditions dt ∈ Td and dta 6∈ Td occur simultaneously.

Assume that dt ∈ Td. If dta 6∈ Td, then there exists a geodesic rep-
resentative w of ta that begins with a letter in N±1

d . Consider the word
wa−1 representing t. Since dt ∈ Td the word wa−1 cannot be geodesic. By
Lemma 2.1 we can write w as u1au2 where a commutes with all the letters
in u2. The word u1u2 is a geodesic representative of t. As such, it cannot
start in N±1

d . Thus the geodesic word w = u1au2 representing ta and the
geodesic word u1u2 representing t start in a different letter. This is possible
only when u1 is empty. Thus w = au2 is a geodesic representative of ta
that starts in N±1

d and a commutes with all letters in u2, i.e., a commutes
with d and all the letters in u2. However, u2 is a geodesic representative of
t. Since any other geodesic representative of t can be obtained from u2 by
commuting letters we conclude that a commutes with d and all the letters
in any geodesic representative of t. A similar proof shows that, conversely,
if a commutes with d and all letters in any geodesic representative of t then
dta cannot be in Td. Therefore

(∗): If dt ∈ Td then dta 6∈ Td if and only if d and all of the symbols in
any geodesic representative of t are adjacent to a in Γ.

For each a ∈ L and dt ∈ Td, define another endomorphism αa−1 : F → F
by replacing a by a−1 in Equation 7. Then

αa(αa−1(dt)) = αa

({
dta−1 , dta−1 ∈ Td

dt, dta−1 6∈ Td

)
=





dt, dta−1 ∈ Td, dta ∈ Td

dta−1 , dta−1 ∈ Td, dta 6∈ Td

dta, dta−1 6∈ Td, dta ∈ Td

dt, dta−1 6∈ Td, dta 6∈ Td

.

As a consequence of (∗) from the previous paragraph, for every a ∈ L, d ∈ D,
and dt ∈ Td, we have dta ∈ Td if and only if dta−1 ∈ Td, and so the middle
two cases in last expression of the equation above cannot occur. Therefore
αa(αa−1(dt)) = dt, and similarly αa−1(αa(dt)) = dt. Thus the maps αa and
αa−1 are automorphisms of F which are inverse to each other.

Finally, for each a, b ∈ L that are adjacent in Γ and each d ∈ D and dt ∈
Td, the equivalence in (∗) shows that the condition dtab ∈ Td is equivalent
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to the conjunction of the conditions dta ∈ Td and dtb ∈ Td, so we have

αb(αa(dt)) =





dtab, dta ∈ Td, dtab ∈ Td

dta, dta ∈ Td, dtab 6∈ Td

dtb, dta 6∈ Td, dtb ∈ Td

dt, dta 6∈ Td, dtb 6∈ Td

=





dtab, dta ∈ Td, dtb ∈ Td

dta, dta ∈ Td, dtb 6∈ Td

dtb, dta 6∈ Td, dtb ∈ Td

dt, dta 6∈ Td, dtb 6∈ Td

.

Therefore, by symmetry, αb(αa(dt)) = αa(αb(dt)). Thus αaαb = αbαa when-
ever a and b are adjacent in Γ, which implies that Equation (7) defines a
homomorphism α : AΓL → Aut(F ), given by a 7→ αa, and an action of AΓL

on the free group F .
Let G := F oAΓL be the semidirect product defined by this action. Next

we show that G ∼= AΓ. A presentation for G is given by

G = 〈L ∪ (∪d∈DTd) | RL ∪ (∪d∈DRd)〉,

where RL is the set of commutation relations defining AΓL (induced by the
edges of ΓL) and for each d ∈ D,

Rd := { da
t = dta | dt ∈ Td, dta ∈ Td } ∪ { da

t = dt | dt ∈ Td, dta 6∈ Td }.

Next apply Tietze transformations to simplify this presentation. Given an
element dt ∈ Td, let ηt be a geodesic representative of t. For each prefix u of
ηt, then du ∈ Td as well, so the relations of the type da

t = dta in Rd can be
used to show that dt = dηt

1 in G. For any other geodesic representative w of
t ∈ AΓL, the relation dηt

1 = dw
1 is a consequence of the relations in RL. If we

denote d = d1 for d ∈ D, then the presentation of G is Tietze equivalent to

〈L ∪ D | RL ∪ (∪d∈DR′
d)〉,

where

R′
d := { dta = dt | dt ∈ Td, dta 6∈ Td }.

Note that the relation da = d occurs in R′
d if da 6∈ Td, and da 6∈ Td if and

only if a is adjacent to d in Γ. Thus the relations in R′
d include all the

defining relations in AΓ involving d. For each relation dta = dt in R′
d with t

a nontrivial element of AΓL, we have dta 6∈ Td, which implies by (∗) that a
is adjacent to d and to all of the symbols in any geodesic for t. This shows
that the relation dta = dt is a consequence of the relation da = d and the
relations in RL. Thus the presentation for G is Tietze equivalent to

〈L ∪ D | RL ∪ (∪d∈DR′′
d)〉,

where

R′′
d := { da = d | da 6∈ Td } = { da = d | a is adjacent to d in Γ },

which is exactly the defining presentation of AΓ.
Therefore AΓ ∼= G = F o AΓL. By induction AΓL has a poly-free tower

of length chr(Γ)−1, so the proof of Proposition 2.3 completes the proof that
AΓ has a poly-free tower of length chr(Γ) and hence pfl(AΓ) ≤ chr(Γ).
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Next consider the lower bound on the poly-free length. Let m = clq(Γ)

and let Γ̃ be a clique of Γ with m vertices. Then Γ̃ is a complete graph, and

the subgroup AΓ̃ corresponding to Γ̃ is isomorphic to Z
m. Lemma 3.1 says

that m = pfl(AΓ̃), and Proposition 2.2 shows that pfl(AΓ̃) ≤ pfl(AΓ). �

6. Poly-freeness of length 2

In this section we prove the converse of the main result in Section 3,
that every graph with the doubly breakable cycle property induces a poly-
free right-angled Artin group of length 2. Together with the main result in
Section 3, this completes the proof of Theorem B.

Given a graph Γ together with a corresponding set D for which Γ has
the doubly breakable cycle property, let L := V (Γ) − D and let ΓL be the
full subgraph of Γ induced by L. Denote by C a set of representatives
from L of the components of ΓL, and let F (C) be the free group on C. If
we define a homomorphism φ : AΓ → F (C) by φ(d) = 1 for d ∈ D and
φ(y) = c whenever y ∈ L and c is the generator of F (C) corresponding to
the component of ΓL containing y, then D is the set of dead vertices and
ΓL is the living subgraph associated to this homomorphism. In the proof
below, our approach follows the same lines as the proof of Theorem A. We
construct a free group F (isomorphic to ker(φ)) and an action of F (C) on
F , in order to show explicitly that AΓ is isomorphic to a semidirect product
F o F (C) of two free groups.

Proposition 6.1. If Γ is a graph with the doubly breakable cycle property,
then the right-angled Artin group AΓ is poly-free of length 2.

Proof. Fix a set D of independent vertices in Γ such that every cycle in Γ
meets D at least twice. Let L be the complementary set of vertices in Γ
and let ΓL be the full subgraph of Γ induced by L. Each of the connected
components of the graph ΓL is a tree. Select one vertex from each component
of ΓL, and denote the set of these vertices by C. Define F (C) := AΓC to be
the subgroup of AΓ corresponding to the subgraph ΓC induced by C. Since
ΓC is totally disconnected, the group F (C) is also the free group on C.

For every vertex y ∈ L, there exists a unique element c ∈ C such that y
and c are in the same component of ΓL, and since this component is a tree,
there exists a unique vertex path (y(n), . . . , y(2), y(1), c) connecting y = y(n)

and c that lies inside the component of c and is of minimal length. We call
c the component representative of y and denote it by ry. For each d ∈ D, let
Nd denote the set of vertices in Γ adjacent to (i.e. neighbors of) d and let
RNd be the set of component representatives of the vertices in Nd. For every
element c in RNd there exists a unique vertex y ∈ Nd that is contained in
the connected component containing c; if y 6= c, denote this neighbor of d by
x(d, c). For example, for the graph in Figure 1, ryi,j

= cj , for all i and j. The
element x(d, c) is defined only in the following four cases: x(d1, c2) = y4,2,
x(d2, c1) = y2,1, x(d2, c2) = y3,2, and x(d4, c2) = y3,2.
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In the following, the normal form of an element t ∈ F (C) refers to the
freely reduced word over C±1 corresponding to t. Define X := L − C. For
each x ∈ X, let x̂ be a copy of x and let X̂ = {x̂|x ∈ X} be the set of such

copies. For each x̂ ∈ X̂, define a set of symbols

Tx̂ := { x̂t | t ∈ F (C), the normal form of t does not

start with a letter in {r±1
x } }.

For each d ∈ D, define a set of symbols

Td := { dt | t ∈ F (C), the normal form of t does not

start with a letter in RN±1
d }.

For any z ∈ X̂ ∪ D, let F (Tz) be the free group over Tz and let F be the
free group

F := (∗
x̂∈X̂

F (Tx̂)) ∗ (∗d∈DF (Td)).

Given any c ∈ C, define an endomorphism αc of the free group F by
defining αc on the generators of F as
(8)

αc(x̂t) :=

{
x̂tc, t 6= 1 or c 6= rx

[(x̂
(n−1)
1 )−1x̂

(n)
1 ] · · · [(x̂

(2)
1 )−1x̂

(3)
1 ][(x̂

(1)
1 )−1x̂

(2)
1 ]x̂

(1)
1 , t = 1 and c = rx

for x̂ ∈ X̂ and t ∈ Tx̂, where (x(n), . . . , x(2), x(1), c) is the minimal length
path from x to c inside the component of c, and

(9) αc(dt) :=





dtc, t 6= 1 or c 6∈ RNd

d1, t = 1 and c ∈ RNd ∩ Nd

d
x̂(d,c)1
1 , t = 1 and c ∈ RNd − Nd

for d ∈ D and t ∈ Td.
Similarly, for c ∈ C, we also define an endomorphism αc−1 : F → F by

(10)

αc−1(x̂t) =

{
x̂tc−1 , t 6= 1 or c 6= rx

x̂
(1)
1 [x̂

(2)
1 (x̂

(1)
1 )−1][x̂

(3)
1 (x̂

(2)
1 )−1] · · · [x̂

(n)
1 (x̂

(n−1)
1 )−1], t = 1 and c = rx

,

for x̂ ∈ X̂ and t ∈ Tx̂, where (x(n), . . . , x(2), x(1), c) is the minimal length
path from x to c inside the component of c, and

(11) αc−1(dt) =





dtc−1 , t 6= 1 or c 6∈ RNd

d1, t = 1 and c ∈ RNd ∩ Nd,

d
[α

c−1 (x̂(d,c)1)]−1

1 , t = 1 and c ∈ RNd − Nd

,

for d ∈ D and t ∈ Td.
As in the proof of Theorem A, it is straightforward to check that the

composition of the endomorphisms αc and αc−1 in either order is equal to
the identity on the generating set of F . (The claim easily follows from

αc(x
(i)
1 (x

(i−1)
1 )−1) = (x

(i−1)
1 )−1x

(i)
1 and αc−1((x

(i−1)
1 )−1x

(i)
1 ) = x

(i)
1 (x

(i−1)
1 )−1,
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which hold for any adjacent pair of vertices x(i) and x(i−1) in the component
of c at distance i and i − 1 from c, respectively, as measured within the
component of c.) Therefore αc and αc−1 are mutually inverse automorphisms
of F .

Since the group F (C) is free, the map c 7→ αc can be extended to a
homomorphism α : F (C) → Aut(F ). Therefore (8) and (9) define an action
of F (C) on F .

Let G := F o F (C) be the associated semidirect product. A presentation
for G can be given by

G = 〈C ∪ (∪
x̂∈X̂

Tx̂) ∪ (∪d∈DTd) | (∪
x̂∈X̂

Rx̂) ∪ (∪d∈DRd)〉,

where, for d ∈ D and x̂ ∈ X̂,

Rx̂ :={ x̂c
t = x̂tc | c ∈ C, x̂t ∈ Tx̂, t 6= 1 or c 6= rx } ∪

{ x̂c
1 = [(x̂

(n−1)
1 )−1x̂

(n)
1 ] · · · [(x̂

(2)
1 )−1x̂

(3)
1 ][(x̂

(1)
1 )−1x̂

(2)
1 ]x̂

(1)
1 | c = rx },

where (x(n), . . . , x(2), x(1), c) is the minimal length path from x to c inside
the component of c and

Rd :={ dc
t = dtc | c ∈ C, dt ∈ Td, t 6= 1 or c 6∈ RNd } ∪

{ dc
1 = d1 | c ∈ RNd ∩ Nd } ∪

{ dc
1 = d

x̂(d,c)1
1 |c ∈ RNd − Nd } .

Next apply Tietze transformations to simplify this presentation.
First note that if x̂t ∈ Tx̂, then every prefix u of the normal form of t

does not start with a letter in {r±1
x }, so x̂u ∈ Tx̂ as well, and similarly for

dt ∈ Td. Using this fact and repeatedly applying the relations of the type
x̂c

t = x̂tc and dc
t = dtc in Rx̂ and Rd, respectively, shows that in G we have

x̂t = x̂t
1 for all t ∈ Tx̂ and dt = dt

1 for all t ∈ Td. If we denote x̂ = x̂1 and

d = d1 for each x̂ ∈ X̂ and d ∈ D, then the presentation for G is Tietze
equivalent to

〈C ∪ X̂ ∪ D | (∪
x̂∈X̂

R′
x̂) ∪ (∪d∈DR′

d)〉,

where

R′
x̂ := { x̂rx = [(x̂(n−1))−1x̂(n)] · · · [(x̂(2))−1x̂(3)][(x̂(1))−1x̂(2)]x̂(1) }

and

R′
d := { dc = d | c ∈ RNd ∩ Nd } ∪ { dc = dx̂(d,c) |c ∈ RNd − Nd }.

Second, for every x̂ ∈ X̂ introduce a single new generator x and a relation
x̂ = x−1rx in the presentation for G. Use these new relations to eliminate
the generators x̂ ∈ X̂ from the above presentation and obtain a Tietze
equivalent presentation

〈C ∪ X ∪ D | (∪x∈XR′′
x) ∪ (∪d∈DR′′

d)〉,

where

R′′
x := { x−1rx = [x(n−1)(x(n))−1] · · · [x(2)(x(3))−1][x(1)(x(2))−1]rx(x(1))−1 }
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and

R′′
d := { dc = d | c ∈ RNd ∩ Nd } ∪ { d = dx(d,c) |c ∈ RNd − Nd }.

The relations in R′′
d say that each d ∈ D commutes with all c ∈ C and

x ∈ X that are its neighbors in Γ, just as in the standard presentation
of AΓ. For each c ∈ C and each vertex x adjacent to c in ΓL, we have
c = rx and x = x(1). The corresponding relation in R′′

x is x−1rx = rxx−1,
which implies that x and c commute. When the path length in ΓL from
x to c is 2, with a vertex path (x(2), x(1), c) from x = x(2) to c = rx,

the corresponding relation is x−1rx = x(1)x−1rx(x(1))−1. Since x(1) and

rx commute, this implies that x and x(1) commute. Continuing in the same
fashion we see that all such relations together imply that each generator
x whose distance to rx in ΓL is n commutes with the generator that is
the neighbor of x on the unique length minimal path from x to c = rx

inside the component of rx. Thus, the standard relations in AΓ can be
recreated from the relations in R′′

x and R′′
d. Conversely, each relation x−1rx =

[x(n−1)(x(n))−1] · · · [x(2)(x(3))−1][x(1)(x(2))−1]rx(x(1))−1 in R′′
x is a corollary

of the defining relations in AΓ. Thus the last presentation above is Tietze
equivalent to the standard presentation of AΓ.

Therefore AΓ ∼= G = F oF (C) has poly-free length at most 2. The doubly
breakable cycle property implies that Γ is not totally disconnected, so the
group AΓ contains a Z

2 subgroup and cannot be free. Thus the poly-free
length of AΓ is exactly 2. �

The free group automorphisms αa constructed in the proof of Theorem A
permute the basis elements of the free group. Although the free group
automorphism αc of F in the proof above does not have the same property,
the automorphism of F ab = F/[F,F ] induced by αc permutes the basis
elements of this free abelian group.

We conclude with a fully worked example illustrating a length 2 poly-free
structure of a right-angled Artin group defined by a graph with the doubly
breakable cycle property, following the proof of Theorem B. Let Γ be the

d

e

y x

b

c

a

Figure 3. Graph with the doubly breakable cycle property
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graph in Figure 3. Set D := {d, e}. The living subgraph has 3 components
and the chosen representatives are the elements of C = {a, b, c}. The only
vertices in X = L − C are x and y. Denote Fq := F (a, b, c). We have

Td = {d1} ∪ { dt | t ∈ Fq, the normal form of t starts with c±1 },

Te = {e1},

and, for ẑ ∈ {x̂, ŷ},

Tẑ = {ẑ1} ∪ { ẑt | t ∈ Fq, the normal form of t starts with b±1 or c±1 }.

Denote Fk := F (Td ∪ Te ∪ Tx̂ ∪ Tŷ). Then AΓ = Fk o Fq, where the action
of Fq on Fk is given by Table 1.

a b c

d1 dŷ1

1 d1 dc

dt dta dtb dtc

e1 ex̂1

1 e1 e1

x̂1 x̂1 x̂b x̂c

x̂t x̂ta x̂tb x̂tc

ŷ1 (x̂1)
−1ŷ1x̂1 ŷb ŷc

ŷt ŷta ŷtb ŷtc

Table 1. Action of Fq on Fk

In Table 1, the entry in the row labeled on the left by the letter σ and column
labeled above by τ is the conjugate στ . In the leftmost column of the table,
the dt, x̂t, and ŷt entries range over all symbols in Td \ {d1}, Tx̂ \ {x̂1}, and
Tŷ \ {ŷ1}, respectively.
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Bourbaki, 24ème année (1971/1972), Exp. No. 401, pages 21–44. Lecture Notes in
Math., Vol. 317. Springer, Berlin, 1973.

[6] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1982.



POLY-FREE CONSTRUCTIONS FOR RIGHT-ANGLED ARTIN GROUPS 21

[7] Carl Droms. Graph groups, coherence, and three-manifolds. J. Algebra, 106(2):484–
489, 1987.

[8] G. L. Fel′dman. The homological dimension of group algebras of solvable groups. Izv.
Akad. Nauk SSSR Ser. Mat., 35:1225–1236, 1971.

[9] Elizabeth Green. Graph products of groups. Thesis, The University of Leeds, (1990).
[10] Susan Hermiller and John Meier. Algorithms and geometry for graph products of

groups. J. Algebra, 171(1):230–257, 1995.
[11] Susan M. Hermiller and John Meier. Artin groups, rewriting systems and three-

manifolds. J. Pure Appl. Algebra, 136(2):141–156, 1999.
[12] James Howie. Bestvina-Brady groups and the plus construction. Math. Proc. Cam-

bridge Philos. Soc., 127(3):487–493, 1999.
[13] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag,

Berlin, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.
[14] David Meier. On the homological dimension of poly-locally free groups. J. London

Math. Soc. (2), 22(3):449–459, 1980.
[15] David Meier. On polyfree groups. Illinois J. Math., 28(3):437–443, 1984.
[16] John Meier and Leonard VanWyk. The Bieri-Neumann-Strebel invariants for graph

groups. Proc. London Math. Soc. (3), 71(2):263–280, 1995.

Dept. of Mathematics, University of Nebraska, Lincoln, NE 68588-0130

E-mail address: smh@math.unl.edu

Dept. of Mathematics, Texas A&M University, College Station, TX 77843-

3368

E-mail address: sunik@math.tamu.edu


