
Algorithms and geometry
for graph products of groups

Susan Hermiller*

Department of Mathematics, University of Melbourne,

Parkville, Victoria 3052, Australia; and

Department of Mathematical Sciences, New Mexico State University,

Las Cruces, NM 88003

smh@mundoe.maths.mu.oz.au

John Meier**

Department of Mathematics, Lafayette College, Easton, PA 18042

meierj@lafvax.lafayette.edu

1. Introduction

Recent work of Gromov, Epstein, Cannon, Thurston and many others has

generated strong interest in the geometric and algorithmic structure of finitely

generated infinite groups. (See [16],[17] and [14].) Many of these structures are

preserved by taking graph products.

The graph product of groups (not to be confused with the fundamental group

of a graph of groups) is a product mixing direct and free products. Whether the

product between two groups in the graph product is free or direct is determined

by a simplicial graph. Given a simplicial graph we say that two vertices are

adjacent if they are joined by a single edge.

Definition. Given a finite simplicial graph G with a group (or monoid)

attached to each vertex, the associated graph product is the group (monoid) gen-

erated by each of the vertex groups (monoids) with the added relations that

elements of distinct adjacent vertex groups commute.

Graph products were defined by Green [15], and have also been studied by

Chiswell [8], [9], [10]. Graph products are a generalization of “semifree groups”

* Research supported in part by NSF grants DMS 9022140 at MSRI and INT 9223826
** Research supported in part by a Lafayette College CASR grant

1

or “graph groups”, which are a special case in which each vertex group is a free

group of rank one; these groups have been studied by Droms, Servatius, VanWyk,

and others (see [12],[13],[23], [25], and the references cited there). Another special

case which has generated interest is the graph product of free monoids of rank

one, also known as “free partially commuting monoids” ([4], [11]). These monoids

have application in computer science to the study of concurrent processes.

Because the graph product involves creating direct products, it is impossible

for the graph product of infinite groups which are negatively curved in the sense of

Gromov to be negatively curved. However, direct products are not inconsistent

with “nonpositive” curvature. The notion of nonpositive curvature in groups

has been captured by Alonso and Bridson in [2] using geometric constraints on

“bicombings” of groups. We show that such structure is preserved by taking

graph products.

Theorem A. The graph product of finitely many semihyperbolic groups is

semihyperbolic.

In [14] various algorithmic structures were introduced for finitely generated

groups, specifically the idea of an “automatic group” and the derivative notions

of biautomatic, asynchronous automatic, and asynchronous biautomatic groups.

Examples of automatic groups are finitely generated free groups, free abelian

groups, Coxeter groups [6], and Artin groups of finite [7] and extra-large [22] type.

It is known that the free product or direct product of finitely many automatic

groups is automatic. The algorithmic structure of the graph product is inherited

from the algorithmic structure of its vertex groups.

Theorem B. The graph product of finitely many automatic groups is auto-

matic.

This result is also true if the word “automatic” in theorem B is replaced by

any of the related notions: biautomatic, asynchronous automatic or asynchronous

biautomatic.

Another algorithmic structure applied to groups is a complete rewriting sys-

tem, which was developed for application to automated theorem proving. Finite

complete rewriting systems differ from the other constructions in this paper in

that they apply to monoids as well as groups, and they are dependent upon the

generating set [19]. The generators used to construct rewriting systems for graph

products are different from those used to construct automatic structures. Ex-

amples of groups which admit finite complete rewriting systems include finitely

generated free and free abelian groups, surface groups, and many Coxeter groups

[18].

2

Theorem C. The graph product of finitely many groups (or monoids) which

admit a complete rewriting system admits a canonical complete rewriting system.

If the rewriting systems for the vertex groups (or monoids) are finite or regular,

then the system for the graph product is also.

Semihyperbolic structures, automatic structures, and finite complete rewrit-

ing systems all give an effective procedure for determining if words in the gen-

erators of a group are in a prescribed “normal form”. All of these groups have

solvable word problem and are of homological type FP∞.

In section 2 we quickly recall important definitions, but a reader unfamiliar

with automatic groups is advised to first read [14]. In section 3 we show that

“combings” for graph products can be built out of the combings available for the

vertex groups, and that the geometric structure of the vertex combings is pre-

served. In section 4 we prove theorem A, essentially just extending the ideas from

section 3. In section 5 we prove theorem B, and section 6 contains a description

of how to extend theorem B to the derivative notions of biautomatic groups, etc.

In section 7 we construct another set of normal forms for graph products and

prove theorem C.

We note that VanWyk [25] has independently proven theorems B and C in

the special case of a graph group, using somewhat different arguments.

2. Definitions and Background

A. Combings

Given a set of monoid generators S for a group Γ, there is a natural map

from the free monoid on S onto Γ, S∗ π
−→Γ. A set of normal forms is a subset

N ⊂ S∗ which bijects under π onto Γ. The idea of a “combing”, as defined by

Alonso, is essentially the geometric analogue of a set of normal forms.

Let Γ be a finitely generated group, and let S be a finite set of generators for

Γ, closed under inverses. (That is, S = S−1, or S is symmetric.) We denote the

Cayley graph of Γ with respect to S by C(Γ, S). This is simply the graph whose

vertices correspond to elements in the group; any two vertices are joined by an

edge if their corresponding group elements only differ by right multiplication by

a single generator. Different choices of generating sets do yield different Cayley

graphs, but these differences are not significant to our results.

We think of the Cayley graph as a metric graph, where each edge is isometric

to the unit interval, and the distance between any two points in the graph is the

minimal length among all paths joining the two points. With this convention we

can say that the length of any element γ ∈ Γ, |γ|, is simply the distance in C(Γ, S)

3

from the identity to γ. (We do not always need to assume that the generating

set is closed under inverses, especially when we discuss finite complete rewriting

systems. We make this assumption primarily so that the “word length metric”

on the group and the “Cayley graph metric” are equivalent.)

For a word ω ∈ S∗, let ε(ω) denote the vertex of the Cayley graph correspond-

ing to the element of Γ represented by ω. Given any word ω = s1s2...sm ∈ S∗,

there is an eventually constant path [0,∞)
pω

−→C(Γ, S), given by defining n 7→

ε(s1s2...sn) for n ≤ m, and n 7→ ε(ω) for n ≥ m, for all natural numbers n, with

the map having constant speed over the interval [n, n+ 1].

Definition. Given a set of normal forms, the associated set of eventually

constant paths is called a combing. Let σγ(t) denote the path in C(Γ, S) corre-

sponding to the normal form for the element γ ∈ Γ.

B. The Geometry of Combings

There are at least two important geometric constraints for combings, con-

trolling the length and controlling the distance between combing paths. (See [5].)

One way to control the length is to require that the combing paths be some-

what efficient, that is, the combing paths do not depart too much from paths of

minimal length.

Definition. A combing is geodesic if for all γ ∈ Γ the combing path σγ(t)

has minimal length among all paths joining the identity to γ.

Definition. Let Tγ be the time at which the path σγ(t) becomes constant.

Then the combing σ is (λ, ε)-quasigeodesic if there exist constants λ ≥ 1 and

ε ≥ 0 such that for all γ and for all s, t ≤ Tγ ,

(QG)
1

λ
|t− s| − ε ≤ dC(σγ(t), σγ(s)) ≤ λ|t− s| + ε.

Here dC denotes the distance in the Cayley graph. This is just a restriction of

the idea of a quasigeodesic map between metric spaces. (See [16],[17].)

Definition. The width of a combing σ is a function measuring how far

combing paths can separate. Specifically,

W (n) = sup
γ∈Γ,s∈S

{dC(σγ(t), σγs(t)) | t ∈ [0,∞), |γ|, |γs| ≤ n}.

A combing is bounded if there exists a constant B > 0 such that the width

function satisfies W (n) ≤ B for all n. Weaker bounds have also yielded surprising

results about the complexity of the word problem; for instance, groups admitting

4

combings whose width functions are bounded by W (n) ≤ n−1 satisfy a quadratic

exponential isoperimetric inequality [5].

What is referred to as a combing in [14] would be referred to here as a

quasigeodesic bounded combing. Any automatic group admits such a combing.

Groups admitting such combings, irrespective of their algorithmic structure, have

also been studied ([1], [24]).

C. Semihyperbolic Groups

A semihyperbolic group is, intuitively, a group which “looks like” the fun-

damental group of a compact nonpositively curved Riemannian manifold. For

details and the basic theorems about semihyperbolic groups, see [2].

Let P be the set of all eventually constant paths starting and stopping at

vertices of the Cayley graph C(Γ, S), for a group Γ with finite generating set S.

We assume that the path is parameterized by arc length. If ι(p) and τ(p) denote

the initial and terminal vertices of such a path, there is a natural map P
ε

−→Γ⊕Γ

given by ε(p) = (ι(p), τ(p)).

Definition. A bicombing is a section Γ ⊕ Γ
σ

−→P of the endpoints map ε.

Denote the chosen path between vertices x and y by σ(x,y).

A bicombing is equivariant if γ · σ(x,y)(t) = σ(γ·x,γ·y)(t) for all γ, x, and y in

Γ, and for all t.

A bicombing is bounded if there exists a constant B > 0 such that the fol-

lowing inequality holds.

(B) dC(σ(x,y)(t), σ(z,w)(t)) ≤ B

for all t, whenever dC(x, z) ≤ 1 and dC(y, w) ≤ 1.

Definition. A finitely generated group with a finite, symmetric set of gen-

erators is semihyperbolic if it admits a quasigeodesic, bounded, equivariant bi-

combing. (This definition does not actually depend on the choice of symmetric

generating set.)

D. Automatic Structures

A reader unfamiliar with automatic groups is advised to read [14]. We use

the same terminology as in [14] and collect relevant definitions and theorems in

this section for easy reference.

A finite state automaton is a simple machine which can read a word from a

chosen finite alphabet A. The finite state automaton either accepts or rejects the

word and the set of accepted words is called a regular language.

5

A finite state automaton can be most easily understood as a finite, directed,

and labeled CW-graph. This graph will have a chosen vertex, the initial state,

and all of the vertices are designated as either accept states or non-accept states.

Going out of every vertex there is exactly one edge for every element in the

alphabet A.

Any word ω ∈ A∗ defines a path in the finite state automaton, starting at

the initial state and then first traveling along the edge labeled by the first letter in

ω, then following the edge labeled by the second letter in ω, etc. If the path ends

at an accept state, then the word is accepted by the finite state automaton and

is part of the corresponding regular language. If not, then the word is rejected.

A state is called a fail state in some finite state automaton if it is a non-accept

state from which all exiting edges are loops.

The following definition is proven to be equivalent to the standard definition

of an automatic group in [14]. It is this alternative definition with which we will

be working.

Definition. Let Γ be a group and let S be a finite, symmetric set of

generators for Γ. Then Γ is automatic if and only if Γ admits a bounded combing

such that the set of normal forms associated to the combing is the regular language

of a finite state automaton with alphabet S.

Remark: Because of the constraints imposed by the combing paths being

accepted by a finite state automaton, these combings will not only be bounded,

they will also be quasigeodesic [14].

E. Rewriting Systems

Let Λ be a finite set (called an alphabet) and let Λ∗ be the free monoid on

Λ as before; the empty word will be represented by 1. A rewriting system on Λ∗

is a subset R ⊆ Λ∗ × Λ∗. An element (u, v) ∈ R, also written u → v, is called a

rule of R. The idea is that a rewriting system is an algorithm for substituting the

right hand side of a rule whenever the left hand side appears in a word. Given

a rewriting system R, write x → y for x, y ∈ Λ∗ if x = uv1w, y = uv2w and

(v1, v2) ∈ R. Write x
+
→ y if x → x1 → x2 → . . . → y for some finite chain of

arrows, and x
∗
→ y if x = y or x

+
→ y. An element x of Λ∗ is irreducible with

respect to R if there is no possible rewriting (or reduction) x→ y; otherwise x is

called reducible. (Λ, R) is a rewriting system for a monoid M if

〈Λ | v1 = v2 if (v1, v2) ∈ R〉

is a presentation for M . A rewriting system for a group G is a rewriting system

for G as a monoid; in particular, the alphabet must generate G as a monoid.

6

The rewriting system R is Noetherian if there is no infinite chain of rewritings

x → x1 → x2 → . . . for any word x ∈ Λ∗. Another way to view this is in terms

of orderings. A partial well-founded ordering on Λ∗ is an ordering such that for

any subset Ξ ⊆ Λ∗, there is an element v ∈ Ξ which is minimal with respect to

the ordering; that is, there is no other word w ∈ Ξ with v > w. Using the axiom

of choice, this is equivalent to saying that for any x ∈ Λ∗, there is no infinite

descending chain of words x > x1 > x2 > The partial ordering on Λ∗ given by

x > y if x
+
→ y is well-founded if and only if the rewriting system is Noetherian.

R is defined to be confluent if whenever x
∗
→ y1 and x

∗
→ y2, there is a

z so that y1
∗
→ z and y2

∗
→ z. In the course of studying graph products, the

confluence of many examples of rewriting systems has been checked using the

software package RRL [20]. R is complete if R is Noetherian and confluent; a

complete rewriting system for a group is also known as a complete presentation.

A rewriting system is regular if {u | (u, v) ∈ R} is a regular language. Standard

properties of regular languages can be used to show that R is regular if and only

if

{w ∈ Λ∗ | w is irreducible}

is a regular language. Finally, a rewriting system is finite if R is a finite set; since

a finite set of words is regular, the irreducible words form a regular language in

this case, also.

A theorem of M. H. A. Newman [21] states that a Noetherian rewriting

system is complete if and only if there is exactly one irreducible word representing

each element of the monoid it presents. For a complete rewriting system, then,

the irreducible words are a set of normal forms, which is closed under taking

subwords. In the case of a finite or regular complete presentation, this is a regular

language of normal forms. The system also gives an algorithm for determining

the normal form associated to any word, and hence an easily computable solution

to the word problem.

3. Combining Combings

Given a graph product Γ of a finite set of groups Gv, if there are already

normal forms prescribed for each vertex group (with the identity having normal

form the empty word), there is a set of normal forms for Γ which restricts to

the given normal forms for the vertex groups. In this section we show how to

construct such normal forms for the graph product.

Convention. We will always be assuming in what follows that the normal

form for the identity is the empty word. This is not restrictive in any of the classes

of groups which we consider. For semihyperbolic groups this would only require

7

a (possibly) larger bound on the bicombing. For automatic groups, replacing

the normal form for the identity element by the empty word gives a new set of

normal forms which is again a regular language, so as before this only requires a

(possibly) larger bound on the width of the combing.

Because the groups associated to adjacent vertices commute in the graph

product, in order to define a normal form we will need to totally order the vertices

of the underlying graph G. To avoid double subscripts we label the vertices of

G by letters, vA, vB , ..., vZ, where the vertices are ordered lexicographically. The

associated vertex groups will be denoted GA, GB, ..., GZ, and their generating

sets will be denoted A,B, ...,Z, respectively. The union of the generating sets for

the vertices is Σ, and it generates the graph product.

We will use the capital letters I, J , and K to stand for arbitrary letters

(analogous to i, j and k standing for arbitrary integers); so, for instance, GI will

denote some vertex group.

Definition. Given a word ω in Σ∗, a subword ω′ of ω is a local word if

it is written in letters coming from a single vertex group and there is no longer

subword of ω, containing ω′, written in letters coming from a single vertex group.

The type of a local word is the label of the corresponding vertex.

Any word in Σ∗ can be expressed as a product of local words. The type

of a word ω ∈ Σ∗ is the string of types of its local words. For example, if

ω = ωAωBωCωA where each ωI is a word in the chosen generators of GI , then

the type of ω is ABCA.

Definition. The global length of a word ω is the number of local words into

which it can be decomposed.

If ω = ...ωIωJ ..., where vI and vJ are adjacent, then the word ω′ = ...ωJωI ...,

obtained by shuffling the local words ωI and ωJ , will evaluate to the same element

in the graph product Γ. Given any word in Σ, we may freely shuffle any adjacent

local words whose corresponding vertices are adjacent in the graph G, and the

new word will evaluate to the same group element as the original word. If, in the

process of shuffling, two local words of the same type become adjacent, then they

can be amalgamated into a single local word. Remove this word if it represents

the identity.

As the shuffling and amalgamating process continues, eventually the global

length of the word will become stable; that is, it will become impossible to shuffle

together two local words of the same type. After the global length has stabilized,

chose a word among all possible shuffles whose type is minimal with respect to

the lexicographic order.

8

This process of taking a word, shuffling, amalgamating, and eventually find-

ing a smallest representative with respect to the ShortLex ordering of types, we

call pruning. A pruning of ω is then a word obtained from ω by the pruning

process.

Notice that the pruning process will not necessarily yield a unique word.

Let G be the direct sum of two infinite cyclic groups with generators a, ã and b, b̃

(where there are two generators for each cyclic group since the generating sets are

assumed to be symmetric). Then the word aãb̃a can be pruned to both aãab̃ and

ab̃ by the method outlined above. This non-uniqueness is not very significant,

since by the propositions below, if we take any pruning of a word and replace

each local word by its normal form, we will get a unique word.

The following proposition is essentially proved in [15].

Proposition 3.1. Let ω and ω′ be two words in Σ∗ which evaluate to the

same element in the graph product Γ. Let T and T ′ be the types of prunings of ω

and ω′ respectively. Then T = T ′.

Definition. Given a set of normal forms for the local words, a word ω in

Σ∗ is proper if it satisfies the following local condition and obstruction condition:

(L) Each local word is in its prescribed normal form.

(O) If ω = ...ωI ...ωJ ... with I ≥ J and vI adjacent to vJ in G, then there

is a local word ωK such that ω = ...ωI ...ωK..ωJ ..., where vK and vJ are

non-adjacent in G.

Proper words are exactly the words which are prunings with each local word

in normal form.

Proposition 3.2. Let Γ be the graph product of a finite set of groups, all

with prescribed normal forms. Then the set of proper words in Σ∗ is a set of

normal forms for Γ.

Proof. Suppose ω and ω′ are distinct proper words representing the same

element of the graph product. Since any pruning of a proper word yields a word

of the same type as the proper word, it follows that by Proposition 3.1, ω and

ω′ must have the same type. So at least one local word in ω must differ from

the corresponding local word in ω′. Write ω = ωiωJωt and ω′ = ωiω
′
Jω

′
t, where

ωJ and ω′
J are corresponding local words in normal form which differ. Let ω̃

denote the normal form for ω−1
J ω′

J . Then the words ωt and ω̃ω′
t are proper words

representing the same element in the graph product, but the types of these words

differ, contradicting Proposition 3.1.

9

These normal forms for the graph product preserve most of the geometric

structure of the combings associated to the normal forms for the vertex groups.

Proposition 3.3. Let Γ be the graph product of a finite set of groups, all

having geodesic combings. Then the combing of Γ associated to the proper words

is geodesic.

Proof. Take any minimal length expression, ω, in the generating set Σ for an

element γ ∈ Γ. By pruning ω, we get a word ω′ which also represents γ. Since the

pruning process does not increase length, ω′ has the same length as the geodesic

word ω; hence it is geodesic. This means that each local word in ω′ must be

geodesic in its corresponding vertex group. Replace any local word which is not

in the normal form of the associated vertex group by the normal form for that

group element; call this new word ω′′. Since the local combings are geodesic, this

will not increase the length of the word. It follows that ω′′ is the proper word

representing γ and is of minimal possible length.

If the generating sets of each vertex group are totally ordered, then there is

a total ordering on Σ given by requiring that any generator for GI is less than

any generator for GJ if I < J . Using this ordering, the following corollary is

immediate.

Corollary 3.4. If the combing associated to each vertex group is the comb-

ing whose elements are minimal with respect to the ShortLex ordering, then the

corresponding combing by proper words for the graph product is the combing whose

elements are minimal with respect to the ShortLex ordering, where the lexico-

graphic ordering on the generators is described above.

Proposition 3.5. Let Γ be the graph product of a finite set of groups, all

having quasigeodesic combings. Then the combing of Γ associated to the proper

words is quasigeodesic.

Proof. For each vertex vI , assume the combing ofGI is (λI , εI)-quasigeodesic.

Let M be the largest value among {λI} and let E be the largest among {εI}. Let

Λ = M + EM . This choice of Λ will insure the following inequalities.

(UB) Λd ≥ λId+ εI (for any d ≥ 1)

(LB)
1

Λ
d ≤

1

λI

d− εI (whenever
1

λI

d− εI ≥ 1)

We will show that the combing given by proper words is (Λ, 2E+1)-quasigeodesic.

Pick any two points on a path associated to a proper word ω. Using the “1”

in 2E+1, we can assume these points are vertices in the Cayley graph of Γ. The

10

choice of the two vertices describes a subword ω′ = ω1ω2...ωn of ω, each local

word in the subword being quasigeodesic.

Let λi and εi be the quasigeodesic constants for the local word ωi. Let ti be

the length of the word ωi, and let di be the actual distance between the endpoints

of ωi. Being a subword of a proper word, ω′ has the same type as a proper word

(and would be proper if the initial and final local words were in their prescribed

normal forms). The length of the combing path for ω′ is then T =
∑
ti, and

by the argument for Proposition 3.3, the distance between the endpoints of ω′ is

D =
∑
di. The quasigeodesic condition (QG) then takes the form

(*)
1

Λ
T − (2E + 1) ≤ D ≤ ΛT + (2E + 1),

which we will establish by finding inequalities for each of the local words and then

adding these together.

Case 1) 2 ≤ i ≤ n− 1

Any local word ωi is in normal form, so it does not represent the identity.

The distance between its endpoints is then nontrivial, so di ≥ 1. Because the

word is quasigeodesic we get the inequality
1

λi

ti − εi ≤ di ≤ λiti + εi. Since we

know that di ≥ 1, it follows that

max{
1

λi

ti − εi, 1} ≤ di ≤ λiti + εi .

Since ti ≥ di ≥ 1 we may apply inequality (UB) to the right term, and because we

have introduced the maximum in the left hand term, we may apply the inequality

(LB), to get the following inequalities.

(**)
1

Λ
ti ≤ di ≤ Λti

Case 2) i = 1, n

Since ωi for i = 1, n may only be a proper subword of a local word in ω, it is

possible that ωi does represent the identity. In this case di = 0 so the argument

of case 1) does not apply. However, ωi is still a quasigeodesic, hence it satisfies
1

λi

ti − εi ≤ di ≤ λiti + εi. So by the choice of Λ and E we get the following

inequalities.

(***)
1

Λ
ti −E ≤ di ≤ Λti +E

for i = 1, n.

11

If we sum the inequalities (**) for interior local words of ω′ and (***) for ω1

and ωn, (and we recall that we moved our original initial and terminal points of

the arc to vertices in the Cayley graph), we establish the inequalities (*).

Proposition 3.6. Let Γ be the graph product of a finite set of groups {GI},

with (λI , εI)-quasigeodesic combings {σI} having width functions {WI}. Then

the function W (n) = max{λI(WI(n) + 1 + εI)} + 1 is a width function for the

quasigeodesic combing σ of Γ obtained from the σI ’s.

Notice that it follows immediately from the proposition that quasigeodesic

bounded combings for the vertex groups yield a quasigeodesic bounded combing

for the graph product.

Proof. To find the width function for the combing σ, we need to compare the

combing paths for an arbitrary element γ ∈ Γ and an element γ · s where s ∈ Σ.

Let ω be the proper word corresponding to γ. Pruning the word ωs, one gets a

word of the same type as the proper word expression for γ · s. We can therefore

shuffle the local word “s” as far left as it can go until it is either adjacent to a

local word of the same type, at which point we can replace the two local words

by the normal form expression for their product, or it encounters a local word

with which it cannot commute, in which case we can shuffle “s” back to the right

until the word type is in lexicographic order.

We can divide the word ω into three parts, ω = ωiωsωt, so that one pruning

of ωs gives the word ωiωssωt or ωiωt (if “ωss” gives the identity). Here ωi, the

initial subword, could be a word of almost any type, ωs is a local word of the same

type as s, and the terminal subword ωt is composed only of local words which

commute with s. (Note that any of these subwords could be the empty word.)

Thus the proper word expression for γ · s is ωiω
′
sωt, where ω′

s is the normal form

for the vertex group element corresponding to ωss.

If it does occur that the words ωs and s cancel, then the proper word is ωiωt.

To check that this is proper, note that s commutes with ωt; hence any local word

in ωt can be shuffled past ωs in the proper word ω. Thus ωiωt is of minimal global

length, and by essentially the same argument, it is lexicographically first among

all possible shuffles.

We may ignore the initial strings and assume that the proper word expres-

sions for γ and γ · s are of the form ωsωt and ω′
sωt respectively. Further, since s

commutes with all the local words in ωt, the following picture can be immersed

in the Cayley graph of Γ.

12

s sss s

ω

ω

ω

ω i

s

s

t

'

ω
t

Fig. 1

Because ωs and ω′
s are both local words, it follows that the distance between

these two combing paths is less than or equal to WI(|γ|), where s is a generator in

the vertex group GI . The quasigeodesic property gives more information about

the local behavior of these combing paths. If one combing path becomes constant

before the other, they can be separated by a distance of at most WI(|γ|); at that

point the longer combing path is within a distance WI(|γ|) + 1 of its endpoint.

Because the combing paths are quasigeodesic, it follows that the longer combing

path must reach its endpoint within a time λI(WI(|γ|) + 1 + εI).

At some time t one of the combing paths ωsωt and ω′
sωt will begin to move

along the word ωt. It follows that the combing path for the other word will have

at most λI(WI(|γ|) + 1 + εI) letters to traverse before it too begins to run along

the word ωt. Therefore the distance between the two points on the combing path

will then be at most λI(WI(|γ|) + 1 + εI) + 1.

Corollary 3.7. If Γ is the graph product of a finite set of groups admit-

ting quasigeodesic bounded combings, then Γ also admits a quasigeodesic bounded

combing.

4. Proof of Theorem A

Theorem A. The graph product of finitely many semihyperbolic groups is

semihyperbolic.

Proof. Let Γ be a graph product of semihyperbolic groups. Using the proper

words of the previous section, Γ admits a combing coming from the combings of

the vertex groups. This can be turned into an equivariant bicombing by taking

the path from γ1 to γ2 to be the translate under γ1 of the combing path from 1

to γ−1
1 γ2.

The argument that the bicombing is quasigeodesic is the same as the argu-

ment in the combing case. Similarly, the argument in §3 shows that the bicombing

paths satisfy inequality (B) (from §2.C) if they start at the same vertex and be-

come eventually constant at vertices a distance at most 1 apart. So to establish

13

theorem A it remains to show that any two bicombing paths which start a dis-

tance 1 apart and end at the same vertex are a bounded distance apart. The

argument will be very similar to the argument given in the combings case of §3.

Assume without loss of generality that one initial vertex is the identity; hence

the other is s for some generator s, and the terminal vertex is γ. Let ω be the

proper word for γ. The bicombing path from s to γ will then follow the edges

with the same labels as the proper word corresponding to s−1γ. Hence this word

can be obtained from the word s−1ω by pruning (and possibly replacing a local

word by its normal form).

Shuffle s−1 to the right until either s−1 is adjacent to a local word of the

same type, in which case the product should be replaced with the normal form, or

a local word with which s−1 cannot commute, in which case s−1 will get shuffled

back into lexicographic order.

As we did before, ω can be expressed as the product of three subwords (some

subwords being possibly empty), ω = ωiωsωt, so that one pruning of s−1ω gives

the word ωis
−1ωsωt or ωiωt, where s−1 commutes with the local words in the

initial subword ωi, ωs is of the same type as s−1, and the terminal subword ωt

could be almost any word. Thus the proper word for s−1 · γ is ωiω
′
sωt where ω′

s

is the normal form for the group element corresponding to the local word s−1ωs.

The following picture immerses into the Cayley graph.

ss s s s

ω

ω

ω

ω

ω i

i

s

s

t

'

Fig. 2

The boundedness of the bicombing follows by essentially the same argument as

is in the proof of Proposition 3.6.

5. Proof of Theorem B

Theorem B. The graph product of finitely many automatic groups is auto-

matic.

Proof. Fix automatic structures with associated automata FI for the vertex

groups GI . (We think of these finite state automata as directed CW-graphs.)

The FI ’s will be used to create a larger directed graph which will be the finite

state automaton admitting the set of proper words as its regular language. This

14

will give a bounded combing of the graph product whose combing paths come

from the regular language of a finite state automaton; hence the graph product

of automatic groups will be automatic.

To aid in the exposition, we first create an oriented graph, the admissible

graph, onto which our finite state automaton graph will project. This admissible

graph will serve as a guide for the allowed types of proper words. That is, the

type of any proper word can be read off by an orientation preserving path on

the admissible graph, and any string of types which occurs from following an

orientation preserving path is the type of some proper word.

The admissible graph is not introduced solely as an aid in the exposition. It

is essentially a finite state automaton accepting the proper words for the “right

angled Coxeter group” [8], i.e. the graph product of cyclic groups of order two,

based on the same graph G. It is also a simple matter to convert the admissible

graph to a finite state automaton which accepts the ShortLex normal forms for

the graph product of free monoids of rank one (the free partially commuting

monoid) with the underlying graph G.

Let ω be a proper word. By property (O), if the type of ω is ...JI... and

J > I, the vertices vI and vJ in the underlying graph G are non-adjacent. It

is possible to codify what types of strings are admissible as the types of proper

words, by looking at the types of subwords which occur when the type of the

entire word is not strictly increasing.

Definition. A string of labels IJK1...Kn is an (I, J)-admissible string if

(i) I > J and vI and vJ are non-adjacent in the underlying graph G;

(ii) the substring JK1...Kn is in strictly increasing order; and

(iii) if Ki ≤ I, then the vertex vi corresponding to the type Ki is not

adjacent to all of the vertices {vI , vJ , v1, ..., vi−1}.

Corresponding to a (I, J)-admissible string there is an oriented simplicial

arc, the (I, J)-admissible arc, beginning with an edge labeled J , followed by an

edge labeled K1, etc. The (I, J)-admissible tree is created by amalgamating the

(I, J)-admissible arcs along their common initial segments.

Example. Let the underlying graph G be:
A B

C D

Fig. 3

15

Order the vertices by A < B < C < D. In this example, the only admissible type

strings are CA,CAC,CACD,CAD,DB, and DBD. Hence the admissible trees

would be:

D

B

D

A

C

C

D

D

Fig. 4

The admissible graph will be built in stages.

Stage 1) Start with an initial vertex, together with a set of edges oriented away

from the initial vertex, one edge for each type. The “type” of a vertex in the

admissible graph will be the label of any edge flowing into it. (No vertex will

have edges with different labels flowing into it.)

Stage 2) Because any increasing initial segment is of proper type, at the terminal

vertex of an edge labeled I, attach edges going to all vertices of type J , where

J > I. After this stage our graph for the example above will be:

A B

CD

Fig. 5

Stage 3) A proper word does not have to have strictly increasing type, hence we

add in the (I, J)-admissible trees to deal with the possible places where the type

string of a proper word decreases. At the I vertex attach the (I, J)-admissible

trees for all J . We will refer to these subtrees as the hanging trees of the admissible

graph. At this stage our example admissible graph will be:

16

A B

CD

B

D

D

D

A

C

Fig. 6

Stage 4) It is possible for the type of a proper word to decrease more than once.

Thus it is necessary to attach edges between certain vertices in the hanging trees.

At each vertex of type I in a hanging tree we will add edges labeled J , for all

J < I such that vJ and vI are non-adjacent in G. This edge will connect the

vertex of type I to the terminal vertex of the first edge of the (I, J)-hanging tree.

Our admissible graph for the example above then is:

A B

CD

B

D

D

D

A

C

Fig. 7

Since cyclic groups of order two only have one nontrivial element, the type

string for a proper word in a graph product of these groups is simply a tran-

scription of the proper word; thus the admissible graph we have constructed will

accept the proper words of the right-angled Coxeter group based on the graph G.

Our admissible graph is not quite a finite state automaton admitting the

proper words for the free partially commuting monoid based on G. Since the

monoid associated to each vertex is free on a single generator, in order to create

17

a finite state automaton admitting the proper words as its regular language we

need to add loops labeled I at each vertex of type I.

To create a finite state automaton for the graph product, we base our con-

struction on the admissible graph, adding in “local finite state automata” to

insure that the local words are in their prescribed normal forms. The finite state

automaton for the graph product will be built in stages analogous to the stages

above.

Stage 0) For each finite state automaton FI associated to a vertex group, add a

fail state which receives edges from every non-accept state of FI . There should

be an edge going to this fail state for each pair consisting of a non-accept state

of FI and a generator of any other vertex group. This will give a directed graph

(which at the moment is not a finite state automaton) F̂I .

This fail state is added since the local words should be in the regular language

of the finite state automaton prescribed for the corresponding vertex group. Thus

any word which contains a local word not in the regular language could not be a

proper word.

If ai ∈ A, the generating set for GA, we call the terminal vertex of the ai-edge

leaving the initial state of FA, the ai-vertex. We similarly define the bi-vertices

and ci-vertices, etc. The set of all such distinguished vertices we call first states.

Stage 1) Start with a copy of F̂I for each I, and identify all the initial vertices

of the F̂I ’s. If the initial letter in a word is ai, then the initial local word will

be of type A, and the graph F̂A will test to see if the initial local word is in the

prescribed normal form for the vertex group GA.

If in each F̂I the edges attaching to the initial state are collapsed to a single

edge, and the remaining vertices and edges are identified with the endpoint of

this single edge, we get the subgraph of the admissible graph constructed in stage

1) of its construction.

Stage 2) For every edge from the I to the J vertex of the admissible graph which

was added in the second stage of its construction, we will add edges between the

graphs F̂I and F̂J . There will be an edge between each pair consisting of an

accept state of F̂I and a first state of F̂J . It will be labeled by ji if its terminal

vertex is the ji-vertex of F̂J .

These edges are added because in any proper word ω, the local words will

be in normal form, and hence end at an accept state of the corresponding finite

state automaton before moving to the next local word. We will essentially repeat

this process in the next two stages.

18

Stage 3) Make a copy of F̂J for every vertex of type J contained in a hanging

tree in the admissible graph. Once again we will add edges between accept states

and first states, this time based on the pattern of edges in the hanging trees.

Starting with the initial vertex of an (I,J)-hanging tree, add edges between

each accept state of the graph F̂I and each first state of F̂J . Repeat this process

for all vertices attached to the J vertex of the hanging tree, and so on.

Once again, collapsing all the F̂I to points, and all the edges of the same type

which run between the same copies of the F̂I to single edges, yields the subgraph

of the admissible graph built in stage 3) of its construction.

Stage 4) For each edge added in stage 4) of the construction of the admissible

graph, we will add edges between accept states and first states. Specifically, if an

edge was attached from an I to a J vertex in the admissible graph, then edges

are added between the accept states of the corresponding copy of F̂I to the first

states of the corresponding copy of F̂J .

Stage 5) After stage 4) not all vertices of our graph will have edges leaving them

of all labels. However at this point there will be an oriented path corresponding

to any proper word. Hence if any vertex is missing an edge corresponding to a

particular generator, then add an edge labeled by that generator from the vertex

to a fail state.

It is easy to check that this construction gives a finite state automaton ac-

cepting the proper words as its regular language. A word will not be accepted if

its local words are not in prescribed form, or if it is not of an admissible type.

Borrowing terminology from [14], we have the following corollary.

Corollary 5.1. The graph product of weakly geodesic (ShortLex geodesic)

automatic groups is weakly geodesic (ShortLex geodesic) automatic.

Proof. These results follow from Corollaries 3.3 and 3.4.

6. Alternative Algorithmic Structures

In this section we briefly indicate how to extend the ideas in §5 to the other

standard algorithmic structures currently being discussed by group theorists,

namely the asynchronous automatic, biautomatic and asynchronous biautomatic

groups.

In an asynchronous automatic group, as opposed to an automatic group,

the combing paths do not have to be of unit speed until they become constant,

but rather they are allowed to pause for a moment before continuing on. Given

this freedom it is even easier to establish that there is an “asynchronous bound”

19

on the distance between combing paths beginning at the identity and ending

a distance one apart. Thus the graph product will inherit an asynchronously

bounded regular combing from its vertex groups. By work in [3] , this shows that

the graph product is an asynchronous automatic group.

A biautomatic group is similar to a semihyperbolic group in that there are

combing paths given between any pair of vertices in the Cayley graph, and, in

addition, the combing paths must be part of the regular language of a finite state

automaton.

Definition. A finitely generated group Γ with a finite, symmetric set of

monoid generators S is biautomatic if Γ admits an automatic structure with reg-

ular language L such that there is some other automatic structure for Γ admitting

the set of formal inverses L−1 as its regular language.

Since formal inverses are obtained by inverting the order of a word, and then

taking the inverses of each generator, the formal inverse of a proper word will

be of minimal type with respect to a ShortLex ordering, using the ordering on

vertices opposite from that used to determine L. By the same methods described

before, a finite state automaton can be constructed which admits these “reverse

proper words” as its normal forms. Also using the same methods as before, the

“reverse proper words” can be shown to give a bounded combing.

As an easy application, consider graph groups, which are the graph products

of copies of Z. Since Z is biautomatic, the following result is immediate.

Proposition 6.1. All graph groups are biautomatic.

This proposition has also been proven in [25], using a different combing.

7. Proof of Theorem C

Given a graph product of groups all of which admit finite complete rewriting

systems, it is natural to try to find a finite complete presentation for the graph

product in which the normal forms, or irreducible words, are the proper words

defined in §3. However, this will not work in general.

Example. Let

Γ = 〈a, b, c, d, e | ab = ba, bc = cb, cd = dc, de = ed, ea = ae〉.

Then Γ is a graph product of free groups of rank one, generated by each of the

five generators of Γ, with underlying graph a pentagon with edges giving the five

commutation relations.

20

Each vertex group has a finite complete rewriting system of the form Λ =

{i, ĩ} and R = {ĩi → 1, ĩi → 1}, where i represents one of the generators of Γ.

Using the normal forms from these rewriting systems, and any ordering of the

vertices, the corresponding set of proper words is not the set of normal forms of a

finite complete rewriting system. For any ordering of the generators, there will be

a sequence of three vertices in a row, reading in a clockwise or counterclockwise

direction around the pentagon, in which the corresponding generators (without a

tilde) are in increasing order. Suppose without loss of generality that a < b < c.

Then the rewriting system must rewrite canb
+
→ bcan for any natural number n;

this cannot be done with finitely many rules, all of which decrease the shortlex

ordering. However, as will be shown in the proof of Theorem C, Γ does admit a

finite complete rewriting system using another set of generators.

Theorem C. The graph product of finitely many groups (or monoids) which

admit a complete rewriting system admits a canonical complete rewriting system.

If the rewriting systems for the vertex groups (or monoids) are finite or regular,

then the system for the graph product is also.

Proof. The proof for a graph product of monoids is exactly the same as the

proof for a graph product of groups; the proof given will be written in terms of

groups.

Suppose that each vertex group GI of a graph product Γ admits a complete

rewriting system (I, RI). Define a rewriting system for Γ as follows. For each

vertex vI , let 1I represent the trivial word over the alphabet I. The alphabet of

the rewriting system is

Λ = {α = (αA, αB, ...αZ) | αI ∈ I ∪ {1I} and {vI | αI 6= 1I} is a nonempty set

of vertices in a complete subgraph of G}.

A complete subgraph of a graph G is a subgraph in which any two vertices are

joined by an edge. In general a word in Λ∗ will be denoted α1...αn where each

αi = (αiA, ..., αiZ). The rules of this system are given by

R = {1) (αA, ..., 1I, ..., αZ)(βA, ..., βI , ..., βZ) → (αA, ..., βI, ..., αZ)(βA, ..., 1I, ..., βZ)

if βI 6= 1I .

2) α1α2...αm → β1β2...βn where:

i) αiJ = βiJ for all 1 ≤ i ≤ m and J 6= I.

ii) α1Iα2I ...αmI → β1Iβ2I ...βkI is a rule in RI .

iii) If k ≤ m, then n = m, and if k < m, βiI = 1I for all k < i ≤ m.

iv) If k > m, then n = k, and βiJ = 1J for all m < i ≤ n and J 6= I. }

21

These rules are presented in general form, assuming two conventions. The first

is that if a symbol (1A, 1B, ..., 1Z) appears on the right hand side of a rule, it is

replaced with the empty word 1Λ of Λ∗. The second is that a rule occurs only if

the letters exist; that is, if the letter (αA, ..., βI , ..., αZ) in rule 1) does not exist,

then there is no rule.

Example. Suppose G is a graph with three vertices vA, vB , and vC , and one

edge joining vA with vB. Suppose also that the rewriting systems for the groups

associated to the vertices are given by the following.

A = {a, ã}, RA = {a3 → 1, ã→ a2 }

B = {b}, RB = {b2 → 1}

C = {c}, RC = {c4 → 1}

Then the rewriting system for the graph product of these groups has alphabet

Λ = {(a, 1, 1), (ã, 1, 1), (1, b, 1), (1, 1, c), (a, b, 1), (ã, b, 1)}.

The set of rules for this example is

R = {1) (a, 1, 1)(1, b, 1) → (a, b, 1) (ã, 1, 1)(1, b, 1) → (ã, b, 1)

(a, 1, 1)(a, b, 1) → (a, b, 1)(a, 1, 1) (ã, 1, 1)(a, b, 1) → (ã, b, 1)(a, 1, 1)

(a, 1, 1)(ã, b, 1) → (a, b, 1)(ã, 1, 1) (ã, 1, 1)(ã, b, 1) → (ã, b, 1)(ã, 1, 1)

(1, b, 1)(a, 1, 1) → (a, b, 1) (1, b, 1)(ã, 1, 1) → (ã, b, 1)

(1, b, 1)(a, b, 1) → (a, b, 1)(1, b, 1) (1, b, 1)(ã, b, 1) → (ã, b, 1)(1, b, 1)

2) (a, 1, 1)(a, 1, 1)(a, 1, 1) → 1 (a, 1, 1)(a, 1, 1)(a, b, 1) → (1, b, 1)

(a, 1, 1)(a, b, 1)(a, 1, 1) → (1, b, 1) (a, b, 1)(a, 1, 1)(a, 1, 1) → (1, b, 1)

(a, 1, 1)(a, b, 1)(a, b, 1) → (1, b, 1)(1, b, 1)

(a, b, 1)(a, 1, 1)(a, b, 1) → (1, b, 1)(1, b, 1)

(a, b, 1)(a, b, 1)(a, 1, 1) → (1, b, 1)(1, b, 1)

(a, b, 1)(a, b, 1)(a, b, 1) → (1, b, 1)(1, b, 1)(1, b, 1)

(ã, 1, 1) → (a, 1, 1)(a, 1, 1) (ã, b, 1) → (a, b, 1)(a, 1, 1)

(1, b, 1)(1, b, 1) → 1 (1, b, 1)(a, b, 1) → (a, 1, 1)

(a, b, 1)(1, b, 1) → (a, 1, 1) (a, b, 1)(a, b, 1) → (a, 1, 1)(a, 1, 1)

(1, b, 1)(ã, b, 1) → (ã, 1, 1) (ã, b, 1)(1, b, 1) → (ã, 1, 1)

(ã, b, 1)(ã, b, 1) → (ã, 1, 1)(ã, 1, 1) (a, b, 1)(ã, b, 1) → (a, 1, 1)(ã, 1, 1)

(ã, b, 1)(a, b, 1) → (ã, 1, 1)(a, 1, 1) (1, 1, c)(1, 1, c)(1, 1, c)(1, 1, c) → 1}.

Lemma 7.1. The rewriting system (Λ, R) is a rewriting system for the graph

product.

Proof. Let M be the monoid presented by the rewriting system (Λ, R).

Recall that Σ is the generating set for the graph product given by the union of

22

the generating sets for each vertex group. Define a map θ : Σ∗ → Λ∗, by sending

a generator iI ∈ I ⊆ Σ to (1A, ..., iI, ..., 1Z), and let Σ′ = θ(Σ). Rule 2) shows

that all of the relations of the vertex groups GI are satisfied by the generators in

Σ′. Rule 1) implies the commutation relations of the graph product. So θ gives a

map from the graph product Γ to M . Rule 1) also shows that the generators in

Λ not in Σ′ can be expressed as products of the generators in Σ′. The remaining

occurrences of rules 1) and 2) are all implied by the relations of the graph product.

Hence the monoid M presented by (Λ, R) is precisely the underlying monoid of

the graph product Γ.

Lemma 7.2. (Λ, R) is a Noetherian rewriting system.

Proof. We will show that the rewriting system is Noetherian by showing

that the ordering on Λ∗ given by v > w if v
+
→ w is well-founded. Each of the

sets I has a well-founded ordering >I on it defined by the complete rewriting

system on GI . For each vertex vI , define a map φI : Λ∗ → I∗ by mapping a word

φI : α1...αm 7→ α1I ...αmI , where symbols αiI = 1I represent the empty word.

Let φ : Λ∗ → A∗ ×B∗ × ...×Z∗ be the map φ = (φA, ..., φZ). Define an ordering

>π on A∗×B∗× ...×Z∗ by setting (vA, ..., vZ) >π (wA, ..., wZ) if vI ≥I wI for all

I, with at least one of the inequalities being strict. This product of well-founded

orderings is again a well-founded ordering.

Let >lex be a partial ShortLex ordering on Λ∗ defined by the following partial

ordering on Λ: α >lex β if |{vI | αI 6= 1I}| < |{vI | βI 6= 1I}|. (This definition is

“contravariant” in order to be consistent with the “left greedy” rules of type 1).)

This gives a well-founded ordering on Λ∗.

Suppose v = α1...αm → w = β1...βn is a rule of the rewriting system R. If

it is of type 1), then φI(v) = φI(w) for all I, and v >lex w. If it is of type 2),

then φJ (v) = φJ (w) for all J 6= I, and φI(v) >I φI(w). It follows that for any

sequence of rewritings x
+
→ y, φ(x) ≥π φ(y), and if φ(x) = φ(y), then x >lex y.

To finish the proof, let Ξ be any subset of Λ∗. Let

Ξ1 = {w ∈ Ξ | w is minimal with respect to >π};

this is a nonempty set since >π is a well-founded ordering. Let

Ξ2 = {w ∈ Ξ1 | w is minimal with respect to >lex};

again this is nonempty. Hence there is a nonempty subset, Ξ2 ⊂ Ξ, whose ele-

ments are minimal with respect to the ordering on Λ∗ defined by x > y if x
+
→ y,

using the rewriting system R. Therefore, the system is Noetherian.

23

Lemma 7.3. (Λ, R) is a complete presentation for Γ.

Proof. We must show that the rewriting system is confluent. To do this,

we will apply Newman’s theorem; instead of proving confluence directly, we will

prove that the set of irreducible words is a set of normal forms. The irreducible

words over the rewriting system (Λ, R) are words of the form α1α2...αm which

satisfy local and obstruction conditions similar to those in §3.

(L) If αiJ 6= 1J for all k ≤ i ≤ l, then αkJ ...αlJ is an irreducible word

for the rewriting system admitted by GI .

(O) If αiJ = 1J and α(i+1)J 6= 1J , then there is a vertex vK which is

not adjacent to vJ such that αiK 6= 1K .

In the proof of Lemma 7.1, a map θ : Σ∗ → Λ∗ was constructed. Suppose ω ∈

Σ∗ is a proper word representing an element γ of the graph product. Applications

of rule 1) of the rewriting system R to θ(ω) essentially shuffle the letters in ω.

Applying this rule as many times as possible, in any order, gives a unique word

in Λ∗. Since ω is proper, rule 2) can not be applied at any stage of this shuffling,

so this resulting word is irreducible; call this word ι(ω). Note that ι(ω) also

represents γ in the graph product.

Define a map ψ : Λ∗ → Σ∗ on generators by sending ψ : α 7→ αAαB...αZ .

Suppose α1α2...αm ∈ Λ∗ is an irreducible word. The pruning process applied to

ψ(α1α2...αm) again simply shuffles letters, in essence having the opposite effect

that rule 1) has. Every subword of an irreducible local word is also irreducible,

and the only irreducible representative of the trivial element is the trivial word

for the vertex group rewriting systems. So in pruning ψ(α1α2...αm), no repre-

sentative of the identity is removed; therefore the pruning process in this case

yields a unique word. Let ν(α1α2...αm) denote the pruning of ψ(α1α2...αm).

The characterization of irreducible words above implies that ν(α1α2...αm) is a

proper word, representing the same element of the graph product as α1α2...αm.

The map ι ◦ ν is the identity map on the set of all irreducible words in Λ∗,

and ν ◦ ι is the identity map on the set of all proper words in Σ∗, so there is

a one-to-one correspondence between proper words and irreducible words, with

corresponding words representing the same graph product elements. Therefore,

the set of irreducible words also gives a normal form for the graph product.

Lemma 7.4. If the complete rewriting systems for the vertex groups are

regular (resp. finite), then so is (Λ, R) .

Proof. It follows immediately from the definition of (Λ, R) that this rewriting

system is finite if all of the rewriting systems (I, RI) are finite.

24

Suppose that for each vertex vI , FI is a finite state automaton which accepts

the regular language of irreducible words of a regular complete rewriting system

for GI . Since the set of irreducible words of (I, RI) is closed under subwords, we

may assume that FI has only one non-accept state, which is a fail state and is

not the initial state. As before, FI will be considered as a finite directed graph.

Let QI be the set of vertices, with initial state pI and accept states PI . For each

vertex qI ∈ QI and each letter αI ∈ I, let δI(qI , αI) be the terminal vertex of

the edge labeled αI out of vertex qI .

Define a finite state automaton F over the alphabet Λ whose vertex set is

Q = QA × QB × ... × QZ × Λ ∪ {F}. F will be a fail state, i.e. a non-accept

state for which every outgoing edge is a loop. The initial state of F will be

(pA, pB, ..., pZ, 1). We attach edges according to the following criteria.

a) Suppose α, β ∈ Λ and the following two conditions hold.

i) βα is irreducible with respect to rule 1) of the rewriting

system R.

ii) δI(qI , αI) ∈ PI is one of the accept states of FI , for all I.

Then there is an edge labeled α whose initial vertex is

q = (qA, qB , ..., qZ, β)

and whose terminal vertex is

δ(q, α) = (δA(qA, αA), δB(qB, αB), ..., δZ(qZ , αZ), α),

where we denote δI(qI , 1I) = pI .

b) If at least one of the conditions i) and ii) does not hold, then δ(q, α) =

F .

Finally, the accept states of F are defined to be the states in PA × PB ×

...×PZ ×Λ. The finite state automaton F has as its language exactly the words

in Λ∗ which are irreducible with respect to R, so (Λ, R) is a regular complete

presentation.

Lemmas 7.1 through 7.4 complete the proof of Theorem C.

Although it is natural to work with the set of generators used in sections

three through six when constructing automatic structures, and intuitively easier,

it is also possible to use the generators from the proof of Theorem C. Given

automatic structures for the vertex groups, the images ι(ω) ∈ Λ∗ of proper words

ω give normal forms for the graph product, as in the proof of Lemma 7.3. We

25

will continue to refer to these words as irreducible words, although they may not

come from a rewriting system. Lemma 7.4 shows that these irreducible words

give a regular language of normal forms.

In order to outline the proof that the combing defined by the irreducible

words is bounded, the path of an irreducible word α1...αn must be compared to

the path of the irreducible word for the element α1...αnβ, where β ∈ Λ. We

can first first reduce to the case in which β = (1A, ..., βI , ..., 1Z) has only one

nontrivial component; if in this case the two paths must stay within a bounded

distance BI , then in the general case they must stay within BA + ... + BZ . In

order to find the normal form for α1...αnβ in this special case, the component

βI must be moved left as far as possible, as with rule 1) of the rewriting system

in Theorem C, giving a new path which stays within a distance one of α1...αn.

Finally, a word in the I component may have to be replaced by a normal form. If

the width function for the automatic structure on the vertex group GI is bounded

by a constant CI , then the normal form for α1...αnβ must stay within a distance

BI = 1 +CI of α1...αn. So the irreducible words also define a bounded combing,

and an automatic structure for the graph product.

Acknowledgements

We thank Gary Gordon for creating the computer drawn figures used in this

manuscript.

References

1. J. M. Alonso, Combings of groups, in “Algorithms and Classification in

Combinatorial Group Theory,” G. Baumslag and C. F. Miller III, eds., MSRI

Publications 23, Springer, New York, 1992, 165-178.

2. J. M. Alonso and M. R. Bridson, Semihyperbolic groups, to appear,

Proc. London Math. Soc.

3. G. Baumslag, S. M. Gersten, M. Shapiro, and H. Short, Automatic

groups and amalgams, J. Pure Appl. Algebra. 76 (1991) 229-316.

4. R. V. Book and H.-N. Liu, Word problems and rewriting in a free partially

commutative monoid, Inf. Proc. Letters 26 (1987/88) 29-33.

5. M. R. Bridson, On the geometry of normal forms in discrete groups, to

appear, Proc. London Math. Soc.

6. B. Brink and R. Howlett, A finiteness property of Coxeter groups, Math.

Ann. 296 (1993) 179-190.

26

7. R. M. Charney, Artin groups of finite type are biautomatic, Math. Ann.

292 (1992), 671-683.

8. I. M. Chiswell, Right-angled Coxeter groups, in “Low Dimensional Topol-

ogy and Kleinian Groups,” D. B. A. Epstein ed., London Math. Soc. Lecture

Note Series 112, Cambridge University Press, Cambridge, 1986, 297-304.

9. I. M. Chiswell, The Euler characteristic of graph products of Cox-

eter groups, in “Discrete Groups and Geometry,” W. J. Harvey and C.

Machachlan, eds., London Math. Soc. Lecture Note Series 173, Cambridge

University Press, Cambridge, 1992, 36-46.

10. I. M. Chiswell, The growth series of a graph product, preprint, Queen

Mary and Westfield College, 1992.

11. V. Diekert, On Knuth-Bendix completion for concurrent processes, Theo-

ret. Comput. Sci. 66 (1989), 117-136.

12. C. G. Droms, Graph groups, coherence, and three-manifolds, J. Algebra

102 (1987), 484-489.

13. C. G. Droms, Subgroups of graph groups, J. Algebra 110 (1987), 519-522.

14. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S.

Patterson, and W. P. Thurston, “Word Processing in Groups,” Jones

and Bartlett, Boston, 1992.

15. E. R. Green, Graph products of groups, Thesis, The University of Leeds,

(1990).

16. M. Gromov, Hyperbolic groups, in “Essays in Group Theory” (S. M. Ger-

sten, ed.), MSRI Publications 8, Springer, New York, 1987, 75-264.

17. M. Gromov, Asymptotic invariants of infinite groups, to appear in “Pro-

ceedings of Conference on Geometric Group Theory at the Isle of Thorns,

July 1991,” Cambridge University Press, Cambridge.

18. S. M. Hermiller, Rewriting systems for Coxeter groups, to appear, J. Pure

Appl. Algebra.

19. M. Jantzen, “Confluent String Rewriting,” EACTS monographs on Theo-

retical Computer Science 14, Springer, Berlin, 1988.

20. D. Kapur and H. Zhang, An overview of Rewrite Rule Laboratory (RRL),

in “Rewriting Techniques and Applications” (N. Dershowitz, ed.), Lecture

Notes in Computer Science 355, Springer, Berlin, 1989, 559-563.

27

21. M. H. A. Newman, On theories with a combinatorial definition of ‘equiva-

lence’, Ann. of Math. 43 (1943), 223-243.

22. D. E. Peifer, Artin groups of extra-large type are automatic, Thesis, Uni-

versity of Illinois, 1992.

23. H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), 34-

60.

24. H. Short, Groups and combings, preprint, ENS Lyon, 1990.

25. L. A. VanWyk, Graph groups are biautomatic, to appear, J. Pure Appl.

Algebra.

28

