
A COUNTEREXAMPLE TO THE BERNHARD-JABLAN

UNKNOTTING CONJECTURE

MARK BRITTENHAM AND SUSAN HERMILLER

Abstract. We show that there is a knot satisfying the property that for each min-
imal crossing number diagram of the knot and each single crossing of the diagram,
changing the crossing results in a diagram for a knot whose unknotting number is at
least that of the original knot, thus giving a counterexample to the Bernhard-Jablan
Conjecture.

1. Introduction

The unknotting number u(K) of a knot K is one of the most fundamental measures
of the complexity of a knot. It is defined as the minimum number of crossing changes,
interspersed with isotopy, required to transform a diagram of K to a diagram of the
unknot. A wide array of techniques have been employed over the years to compute
unknotting numbers, using nearly every new technique that has been introduced into
knot theory (see [5],[13],[14],[17],[18],[20],[23],[24],[25],[26] for a selection). Yet to this
day there are still nine 10-crossing knots whose unknotting numbers remain unknown,
a testament to the difficulty of determining this basic invariant. See the Knotinfo site
[4] for the most up-to-date list of unresolved knots.

It is an elementary fact that for every diagram D of K with n crossings, there is a
set of k ≤ n/2 crossings in the diagram which when all k are reversed yields a diagram
D′ of the unknot. So every diagram has its own ‘unknotting number’. It is also a
well-known result that the unknotting number of K can be defined, alternatively, as
the minimum, over all diagrams D of the knot K, of the unknotting number of the
diagram. That is, one can always arrange things so that, in a minimal unknotting
sequence, all isotopies come first. It is natural then to try to turn this alternate
formulation into an algorithm to compute the unknotting number of a knot K, by
trying to limit the number or types of diagrams of K that need to be considered
(either with or without intermediate isotopy).

The most natural initial conjecture, namely that we can limit ourselves to the
(finitely many) diagrams of K with minimum crossing number, without isotopy, was
disproved by Bleiler [2] and Nakanishi [22], who showed that the unique minimal
diagram of the knot 108 requires three crossing changes to produce the unknot, while
u(108) = 2. There is a crossing change in the diagram which reduces unknotting
number, but an isotopy of the resulting knot is required to create the next (and last)
needed crossing change.

The next best thing one could hope for is that one of the minimal diagrams for K
admits a crossing change which lowers the unknotting number (as is true for the knot
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108). This was the conjecture posited by Bernhard [1] and Jablan [9], and which has
come to be known as the Bernhard-Jablan Conjecture. For a knot K, we let

BJSetK = {K ′ |K ′ is obtained from a minimal crossing number

projection of K by changing a single crossing},

and we write us
BJ(K) to denote the strong Bernhard-Jablan unknotting number of K,

defined as

us
BJ(K) = 1 + min{u(K ′) | K ′ ∈ BJSetK}.

Conjecture 1.1 (Bernhard-Jablan). Every knot K possesses a minimal-crossing-
number diagram D and a crossing in D, such that changing the crossing results in a
diagram D′ for a knot K ′ with u(K ′) < u(K). Equivalently,

(1) u(K) = us
BJ(K)

for all knots K.

If this conjecture were true, then we would have, in principle, an algorithm to
compute u(K): construct the finitely many minimal diagrams for K, change each
crossing, and compute the unknotting number of each resulting knot (recursively,
using the conjecture). The minimum unknotting number found among the resulting
knots is one less (since under crossing change, unknotting number can change by at
most one) than the unknotting number of K. Unfortunately, this cannot work in
general; that is the main result of this paper.

Theorem 1.2. There is a knot K whose unknotting number is less than or equal to
the unknotting numbers of all of the knots obtained by changing any single crossing in
each of the minimal crossing diagrams of K. That is, the Bernhard-Jablan Conjecture
is false, in general.

It is an interesting twist that while we now know that the conjecture is false, we do
not (yet) know which knot K fails to satisfy Equation (1), and consequently satisfies
u(K) < us

BJ(K). To make this more precise, we define the weak Bernhard-Jablan
unknotting number uw

BJ(K) of any knot K by induction on the crossing number, as
follows. Let uw

BJ(unknot) = 0, and suppose that we have computed uw
BJ(K) for all

knots with crossing number < n. Let S = Sn be the set of knots with crossing number
n, and for each K ∈ S, let TK be the set obtained from the set BJSetK (of knots
represented by a diagram that can be obtained from a minimal crossing diagram forK
by changing a single crossing) by replacing each knot K ′ ∈ TK with crossing number
< n with the number uw

BJ(K
′) (using the inductive assumption). We make repeated

passes through the set S and the TK sets, as follows. For every knot K in S such that
TK contains the number 0 (that is, BJSetK contains the unknot), define uw

BJ(K) = 1
(since K is not the unknot), remove K from S, and for any knots K ′ remaining in
S, replace every instance of K in TK ′ by the number 1. For each natural number
ℓ starting at 1, incremented by 1 at each repetition, we iterate this process: For all
K ∈ S such that ℓ ∈ TK , define u

w
BJ(K) = ℓ+1, remove K from S, and for any knots

K ′ remaining in S, replace every instance of K in TK ′ by the number ℓ+ 1.
In Lemma 2.1, we show that uw

BJ(K) is (well-)defined, that is, the process just
described will assign a value to uw

BJ(K), and u(K) ≤ us
BJ(K) ≤ uw

BJ(K) for all knots
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K. In Corollary 2.2, we show that the Bernhard-Jablan conjecture holds if and only
if

(2) u(K) = uw
BJ(K)

for all knots K. Our proof of Theorem 1.2 shows that Equation (2) fails for the knot
K13n3370, and shows that Equation (1) fails for one of four knots. More precisely,
in Section 2 we show:

Theorem 1.3. The knots K12n288, K12n491, K12n501, and K13n3370 satisfy
K12n288, K12n491, K12n501 ∈ BJSetK13n3370, and the following hold.

(a) u(K13n3370) ≤ 2 < 3 = uw
BJ(K13n3370).

(b) us
BJ(K

′) = uw
BJ(K

′) = 2 for all K ′ ∈ {K12n288, K12n491, K12n501}.
(c) us

BJ(K13n3370) = 1 + min{u(K ′) | K ′ ∈ {K12n288, K12n491, K12n501}}.
(d) For at least one K ∈ {K12n288, K12n491, K12n501, K13n3370} we have u(K) <

us
BJ(K).

The proof that the unknotting number of the knot K13n3370 is less than or equal
to 2 is given in Section 2 by direct construction. Part (d) of Theorem 1.3 is a direct
corollary of parts (a-c): If Equation (1) holds for the three 12-crossing knots, then
by part (b) and Lemma 2.1(2) they all have unknotting number equal to 2, and so
by part (c) the strong Bernhard-Jablan unknotting number for K13n3370 is 3, and
then part (a) shows that this 13-crossing knot fails Equation (1).

The bulk of the work needed to reach these conclusions was carried out by computer.
In particular, the diagram which establishes that u(K13n3370) ≤ 2 was found by a
random search, using the program SnapPy [6] to generate and identify knots as well
as identify the knots obtained by crossing change. That search found a projection of
the knot K13n3370 which a single crossing change turned into a diagram for the knot
K11n21, which has unknotting number one. [To be completely accurate, it found
the diagram for K11n21 first.] The results on weak and strong Bernhard-Jablan
unknotting numbers are established using an exhaustive search to identify all of the
minimal crossing diagrams of the knots involved, as an incidental consequence of
identifying all minimal crossing diagrams of all knots through 14 crossings. This last
computation was also carried out within SnapPy, and later independently verified
using the program Knotscape [8]. The code used to carry out these computations can
be found on the authors’ website, at the URL listed on page 11 below.

In Section 3, we provide information on further examples of knots for which the
unknotting and weak Bernhard-Jablan unknotting numbers differ. In Section 4, we
discuss several open questions that arise from Theorem 1.2.

All of these computations were in fact part of a larger project, whose goal is to
fill in the gaps in our knowledge of the unknotting numbers of low crossing-number
knots. By using the fact that unknotting number changes by at most one under
crossing change, we can use the knowledge of the unknotting numbers of ‘crossing-
adjacent’ knots to pull a lower bound L for u(K) up (by finding an adjacent knot K ′

with u(K ′) > L + 1) or pull an upper bound U down (by finding adjacent K ′ with
u(K ′) < U − 1). Pulling lower bounds up is a relatively routine occurrence in our
computations (and often results in the determination of the unknotting number); the
first instance where an upper bound was pulled down forms the core of this paper.



A COUNTEREXAMPLE TO THE BERNHARD-JABLAN CONJECTURE 4

Acknowledgments. The authors wish to thank the Holland Computing Center at
the University of Nebraska, which provided the computing facilities on which the bulk
of this work was carried out. The second author acknowledges support by NSF grant
DMS-1313559.

2. The proof of Theorem 1.2

2.1. The three unknotting numbers. We begin the proof of Theorem 1.2 with
two lemmas on the relationships between the three types of unknotting numbers.

Lemma 2.1. Let K be a knot.

(1) The weak Bernhard-Jablan unknotting number is well-defined and satisfies

uw
BJ(K) = 1 + min{uw

BJ(K
′) | K ′ ∈ BJSetK}.

(2) u(K) ≤ us
BJ(K) ≤ uw

BJ(K).

Proof. In order to show that uw
BJ(K) is well-defined, we must show that in the iterative

procedure passing through the set S and the sets TK (for K ∈ S), eventually S = ∅
and uw

BJ(K) is defined for every knot with crossing number n. Suppose that K ∈ S,
let D be any minimal crossing number diagram for K, and let TD,k be the set of
knots represented by diagrams obtained by changing any k crossings of the diagram
D. By the elementary fact noted above (bounding the number of crossing changes
needed in a minimal crossing diagram to produce the unknot), for some 1 ≤ k ≤ n/2,
the sets TD,0, ..., TD,k−1 do not contain a knot with crossing number < n, but the set
TD,k does contain a knot Kk with crossing number < n. Now Kk is represented by
a diagram obtained from D by changing k crossings c1, ..., ck. Moreover, the knots
Ki represented by the diagram obtained from D by changing the crossings c1, ..., ci
satisfy that Ki has crossing number n and Ki+1 ∈ BJSetKi

for all i < k, and K = K0.
Now the set TKk−1

contains the number uw
BJ(Kk), and so in the procedure above, after

at most 1+uw
BJ(Kk) passes through S and the TK̃ sets, uw

BJ(Kk−1) is assigned a value
≤ 1 + uw

BJ(Kk). Then after at most 1 + uw
BJ(Kk−1) passes, u

w
BJ(Kk−2) is assigned a

value ≤ 1 + uw
BJ(Kk−1), etc. Hence after finitely many passes, uw

BJ(K) = uw
BJ(K0) is

assigned a value.
From the definition of uw

BJ(K), at the point in the process in which uw
BJ(K) = r is

defined each knot K ′ in the set BJSetK is either in TK or else has been replaced in TK

by the number uw
BJ(K

′). Moreover, at that point r− 1 is the least number appearing
in TK , and all of the knots K ′ in TK satisfy uw

BJ(K
′) ≥ r as well, since they will be

assigned values later in the process, concluding the proof of part (1).
The inequality u(K) ≤ us

BJ(K) is immediate from the definitions, since for every
K ′ ∈ BJSetK , we have |u(K ′) − u(K)| ≤ 1, so u(K ′) ≥ u(K) − 1. An inductive
argument shows that u(K) ≤ uw

BJ(K), since uw
BJ(K) = uw

BJ(K
′) + 1 ≥ u(K ′) + 1 ≥

u(K) for some K ′ ∈ BJSetK with uw
BK(K

′) < uw
BJ(K), and therefore (using part (1))

us
BJ(K) ≤ uw

BJ(K) as well. �

Corollary 2.2. The Bernhard-Jablan Conjecture holds if and only if u(K) = uw
BJ(K)

for all knots K.

Proof. If u(K) = uw
BJ(K) (Equation (2)) holds for all knots K, then Lemma 2.1(2)

shows that Equation (1) holds for all K as well.
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Conversely, suppose that the Bernhard-Jablan Conjecture holds. We prove Equa-
tion (2) by induction on u(K). Note that u(K) = 0 implies that K is the un-
knot, and so uw

BJ(K) = 0 also. Suppose that Equation (2) holds for all knots
with unknotting number < n, and suppose that u(K) = n. By Equation (1) and
the definition of us

BJ , u(K) = 1 + min{u(K ′) | K ′ ∈ BJSetK}, and so by the in-
ductive assumption u(K) = 1 + min{uw

BJ(K
′) | K ′ ∈ BJSetK}, since the smallest

u(K ′) appearing is less than u(K) = n, and so equals uw
BJ(K

′), and for all other
K ′′ ∈ BJSetK we have uw

BJ(K
′′) ≥ u(K ′′) ≥ u(K ′) = uw

BJ(K
′). The conclusion follows

from Lemma 2.1(1). �

2.2. Computational resources. There are three resources that we used to assem-
ble the data needed to establish the results in Theorem 1.3. The first of these is
SnapPy [6], an indispensible program for studying knots and 3-manifolds, based on
the program SnapPea, and developed by Culler, Dunfield, Goerner and Weeks. In
particular, SnapPy was used to build knots as (random) braids, and to identify them
using SnapPy’s identify() command. This utility uses a hash based on the knot’s
geometric properties to compare to a list, to determine the likely identity of the knot,
and then uses an underlying canonical triangulation of the knot complement to find
a combinatorial isomorphism between ideal triangulations of a given knot comple-
ment and a reference knot complement, which provides a homeomorphism of knot
complements and so, by the solution to the Knot Complement Problem by Gordon
and Luecke [7], identifies the knot. We also detected the unknot using the funda-
mental group() command, since the unknot is the only knot whose knot group has a
presentation with no relators, i.e., the knot group is free. Although it is not relevant
to the specific examples that we will discuss, SnapPy’s deconnect sum() command
was also used to identify non-prime knots and their summands.

The second resource we used is Knotscape [8], developed by Hoste and Thistleth-
waite. We used this program to provide an independent verification of the database
of minimal crossing diagrams for knots with a fixed crossing number, discussed be-
low; Knotscape works directly with Dowker-Thistlethwaite (DT) codes, and applies
combinatorial moves on these codes to match a knot projection with a unique normal
form, thereby identifying the knot. It also, incidentally, can be much faster than
SnapPy at the task of identifying thousands or millions of knots in a row, since it
directly manipulates a knot’s DT code.

The third resource we used is Knotinfo [4], the online database of knot invariants
maintained by Jae Choon Cha and Chuck Livingston at the University of Indiana.
This was used to populate lists of knots with known unknotting number, as well as
initial upper and lower bounds for knots with unknown unknotting number, in order
to make the needed comparisons with ‘crossing-adjacent’ knots.

Taken together, these tools gave us the foundation on which to build our search
process, and assemble the data described below.

2.3. Computation of BJSetK. In this subsection we describe our procedure for
constructing the set BJSetK for any k-crossing knot K. Roughly, this is done by
exhaustively identifying every knot associated to every k-crossing diagram up to flypes
(Figure 1). We carried out these calculations using SnapPy to identify the knots, and,
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as an independent check, carried out the same exhaustion using Knotscape [8], again
using SnapPy to make the identifications.

More precisely, for a fixed natural number k, we start with a set of DT codes (as used
in SnapPy) containing a representative for a minimal diagram of each alternating k-
crossing knot; we refer to the associated set of knot diagrams as the set R of reference
diagrams for this procedure.

Let D be the set of all DT codes for diagrams obtained by changing a subset of the
crossings of a reference diagram (omitting changing the lexicographically first crossing
in each DT code, since including it would only produce the mirror images of the other
knots built). SnapPy can then be used to identify the knots associated to the DT
codes in D; let DK be the subset of D consisting of the projections of K obtained from
the reference diagrams by crossing changes. Finally, again use SnapPy to identify the
set RefBJSetK of knots represented by diagrams obtained from elements of DK by a
single crossing change.

In the following, we show that the collection BJSetK of knots we obtain from all
k-crossing projections of a k-crossing knot K by changing a single crossing is the
same as the collection RefBJSetK we obtain by using the projections of K obtained
from crossing changes made to reference diagrams alone; hence the algorithm above
computes the set BJSetK , and the diagrams obtained from the reference diagrams by
a single crossing change suffice for the computations needed in the strong and weak
Bernhard-Jablan unknotting numbers. This perspective is implicit in some of the
work of Jablan and Sazdanovic [10] and of Zeković, Jablan, Kauffman, Sazdanovic
and Stošić [29] on this conjecture.

Proposition 2.3. For any knot K, BJSetK = RefBJSetK.

Proof. It is immediate that RefBJSetK ⊆ BJSetK .
Let K1 be any element of BJSetK . There is a k-crossing projection D of the k-

crossing knot K, and a diagram D1 obtained from D by changing a single crossing,
such that D1 is a projection of K1. Note that D is reduced (i.e., D has no nugatory
crossing) since such a k-crossing diagram with a nugatory crossing cannot represent
a k-crossing knot. Build the associated knot shadow (a k-vertex 4-valent graph) by
replacing each crossing with a vertex of valence 4, and from this shadow, reintroduce
crossings to obtain a reduced diagram D′ for an alternating knot. The diagram D′

must have crossing number k [12],[21],[28], and by the proof of the Tait Flyping
Conjecture [19] the diagram D′ is related to the reference diagram R of the same
alternating knot by a sequence of flypes (Figure 1).

R
R

Figure 1. Flype

By applying Lemma 2.4 below (with D, D̃, and D1 in that Lemma playing the

roles of D′, R, and D, respectively) a finite number of times, there is a diagram D̃
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obtained by changing crossings in R such that D and D̃ are related by a sequence of

flypes. Then D̃ is represented by a DT code in the set D. Moreover, since the flype
move does not change the knot represented by the diagram, the knots represented by

D and D̃ are the same, and so D̃ ∈ DK is another minimal diagram for the knot K.

Applying Lemma 2.4 another time, there is a diagram D̃1 obtained by changing a

single crossing in D̃1 such that D1 and D̃1 are related by a sequence of flypes. Then
D̃1 is another projection of the knot K1, and since D̃1 is obtained by a single crossing
change from a diagram represented in DK , then K1 is in RefBJSetK . �

Lemma 2.4. If knot diagrams D and D̃ are related by a sequence of flypes, then for
any diagram D1 obtained by changing a crossing in D there is a diagram D̃1 obtained

by changing a crossing in D̃1 such that D1 and D̃1 are related by a sequence of flypes.

Proof. This can be established by induction on the number of flypes used, by showing
that a crossing change followed by a flype yields the same diagram as the same
flype followed by some crossing change; therefore several flypes followed by a crossing
change is the same as some crossing change followed by several flypes. There are three
cases to consider. (1) If the crossing change is outside of the tangle being flyped, then

the same crossing change applied after the flype will yield the diagram D̃1 related
to D1 by the same flype. (2) If the crossing change is inside of the tangle being
flyped, then the crossing is carried to a crossing in the new diagram by the flype,
and changing that corresponding crossing after the flyped yields the same diagram
as crossing change followed by flype. (3) If the crossing change is the one which is
removed by the flype, then applying the crossing change followed by the flype yields
the same diagram obtained by first applying the opposite flype and then changing
the crossing created by the flype (illustrated in Figure 2).

R
R

R
R

cross

flype

flype

cross

Figure 2. Flype and crossing change

�

Thus we lose no information about the knots that we need to consider in computing

the weak Bernhard-Jablan unknotting number if we only work with the diagrams D̃
for K obtained by changing crossings in our reference diagrams.
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2.4. Proof of Theorem 1.3. The remainder of the proof of Theorem 1.2 in this
section is the proof of parts (a)-(c) of Theorem 1.3. We begin with part (a) of that
theorem.

Lemma 2.5. The knot K13n3370 has unknotting number less than or equal to 2.

Proof. The knot K13n3370 is the closure of the 7-braid

{1, 1,−3, 4,−3,−5, 5,−6,−6, 4,−5, 2, 4,−6, 3, 4,−1, 3, 5, 2},

with 20 crossings, using the notational convention of Knotinfo, shown in Figure 3.

Figure 3. K13n3370

SnapPy can convert this braid representation to a Dowker-Thistlethwaite (DT)
code for K13n3370, using the command DT code(), which SnapPy handles more
natively than braid notation, giving us the DT code

[−14,−10,−22, 20, 34,−36, 40,−24,−8, 6,−18,−32, 2, 38, 26,−12,−16, 4,−30, 28].

SnapPy verifies that this code represents the knot K13n3370. Changing the seventh
crossing in the code gives us the DT code

[−14,−10,−22, 20, 34,−36,−40,−24,−8, 6,−18,−32, 2, 38, 26,−12,−16, 4,−30, 28]

which SnapPy identifies as the knot K11n21. From the Knotinfo database, we find
that u(K11n21) = 1; in fact, it is the case that all 23 minimal crossing diagrams for
the knot K11n21 have at least one crossing which yields the unknot when changed.
DT codes for these 23 diagrams can be found in an appendix at the end of this paper.

This shows that a single crossing change to the given diagram for K13n3370 yields
a knot with unknotting number 1; therefore, K13n3370 has unknotting number at
most 2. �

Next, we show the other result in part (a) of Theorem 1.3, that the weak Bernhard-
Jablan unknotting number uw

BJ(K13n3370) is equal to 3, as well as parts (b-c) of
that Theorem. In overview, we use the algorithm of Section 2.3 to find the sets
DK and RefBJSetK associated to the knot K13n3370, and iteratively find the sets
DK ′ and RefBJSetK ′ for all K ′ ∈ RefBJSetK , etc. We then use the definition of uw

BJ

(or iteratively apply Lemma 2.1) and Proposition 2.3, as well as other information
on unknotting numbers for knots in the set BJSetK13n3370, to determine the weak
Bernhard-Jablan unknotting number of the knot K13n3370.

In more detail, working directly with SnapPy (or equivalently, with Knotscape)
to build these sets, we find that there are 4878 13-crossing alternating knots, which
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yield 4878 reference diagrams, and changing every subset of 12 of the crossings in each
diagram yields 212 diagrams for each, for a total of 19, 980, 288 diagrams for SnapPy
to identify. Distributing the work over several machines made this a manageable task.
The resulting data can be found at the website described on page 11 of this paper.
Among these diagrams there are 64, 399 diagrams which represent 13-crossing knots
(also to be found at the website; for comparison, 6, 122, 841 of the diagrams represent
the unknot), and 24 minimal diagrams for the knot K13n3370; their set DK13n3370 of
DT codes are listed in the appendix.

Changing each single crossing in each of these 24 diagrams yields 312 diagrams,
but only 13 distinct knots, according to SnapPy: they are the knots in the set

BJSetK13n3370 = {74,88, 1034, K11a211, K11n91, K11n132, K12a1118, K12n288,

K12n333, K12n469, K12n491, K12n501, K12n512}.

For at least 10 of these 13 knots, the unknotting number, and hence (by Lemma 2.1(2))
also the weak Bernhard-Jablan unknotting number, is at least 2.

Lemma 2.6. The knots 74, 88, 1034, K11a211, K11n91, K11n132, K12a1118,
K12n333, K12n469, and K12n512 all have unknotting number at least 2.

Proof. Lickorish [16] showed that u(74) = 2, Kanenobu and Murakami [11] showed
that u(88) = u(1034) = 2, and Lewark and McCoy [15], using the smooth 4-ball
genus g4, showed that u(K11a211) ≥ g4(K11a211) = 2. Borodzik and Friedl [3],
using the algebraic unknotting number ua, showed that u(K) ≥ ua(K) = 2 for
K = K11n91, K11n132, K12a1118, K12n333, and K12n469. The authors showed
(see [4]), using the same random search procedure used to discover the projection of
K13n3370 used in this paper, that the knot K12n512 has a projection with a crossing
change yielding the knot 938, and u(938) = 3 was shown by Owens [23], following
earlier work of Stoimenow [27]. The relevant braids to see this knot adjacency are

{2, 3,−4,−4, 1,−2, 3,−3, 5,−3,−1, 4, 2, 1,−5,−4, 3, 3, 1, 1, 2}

for K12n512 and

{2, 3,−4, 4, 1,−2, 3,−3, 5,−3,−1, 4, 2, 1,−5,−4, 3, 3, 1, 1, 2}

for 938. Therefore, all of these knots have unknotting number at least 2. �

This leaves K12n288, K12n491, and K12n501, whose unknotting numbers at the
time of this writing are still unknown. But the same exhaustive procedure from
Section 2.3 applies to find the set DK of minimal crossing diagrams for each K ∈
{K12n288, K12n491, K12n501}, as well as, incidentally, the minimal diagrams (up
to flypes) of all 12-crossing knots. The data set for all 12-crossing knots is available
on the website discussed below (on page 11). These three knots have, respectively,
24, 9, and 18 such diagrams, which are given in the appendix. SnapPy verifies that
no single crossing change in any of these 51 diagrams yields the unknot, and so (using
Proposition 2.3) the sets BJSetK for K ∈ {K12n288, K12n491, K12n501} do not
contain the unknot. Hence these three 12-crossing knots all have both strong and
weak Bernhard-Jablan unknotting number at least 2. Lemma 2.1(1) now shows that
uw
BJ(K13n3370) ≥ 3.
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To show part (b) of Theorem 1.3, it now suffices to show the further claim that
uw
BJ(K) ≤ 2 for all K ∈ {K12n288, K12n491, K12n501}; we give an explicit con-

struction using SnapPy computations. The knot K12n288 has a minimal crossing
diagram with DT code

[4, 10, 12,−16, 2, 8,−18,−22,−6,−24,−14,−20];

when the second crossing is changed (changing the sign of the underlined entry in the
DT code), SnapPy identifies the resulting knot as the trefoil 31. The knot K12n491
has minimal diagram with DT code

[6,−12, 20, 18, 24, 16,−4, 22, 8, 2, 14, 10],

and changing the first crossing yields the knot 63. Finally, the knot K12n501 has
diagram with DT code

[6,−10, 22, 24,−16, 18, 20,−2, 4, 14, 12, 8],

and changing the third crossing results in the knot 813. It is a straightforward compu-
tation to check that every K ′ ∈ {31, 63, 813} has a minimal diagram admitting a single
crossing change to the unknot, and hence satisfies uw

BJ(K
′) = 1. (An alternative proof

that each uw
BJ(K

′) = 1 follows from the fact that each u(K ′) = 1 (see for example
KnotInfo [4]), and a result of McCoy [18] that u(K ′) = 1 implies uw

BJ(K
′) = 1 for all

alternating knots.) The claim now follows from Lemma 2.1(1).
Applying Lemma 2.1(1) again, to the knot K13n3370, shows the last part of The-

orem 1.3(a), that uw
BC(K13n3370) = 3, as well as part (c) of Theorem 1.3.

As a consequence of these computations, either one of the knotsK12n288, K12n491,
and K12n501 has unknotting number 1, and so fails to satisfy Equation (1) in the
Bernhard-Jablan Conjecture, or else all of the knots obtained from a minimal dia-
gram of K13n3370 by changing a crossing have unknotting number at least 2, and so
K13n3370 has strong Bernhard-Jablan unknotting number 3 and Equation (1) fails
for K13n3370. This completes the proof of Theorems 1.3 and 1.2, of the existence of
a counterexample to the Bernhard-Jablan Conjecture.

3. Further examples

In further computations we have found more counterexamples to the Bernhard-
Jablan Conjecture. The following three pairs (K, K̃) each satisfy that there is a

diagram for K with a single crossing change resulting in a diagram for K̃, and u(K̃)+
2 ≤ uw

BJ(K). Since K and K̃ are crossing adjacent, then u(K) ≤ u(K)+1, and hence
u(K) < uw

BJ(K), giving a failure of Equation (2) for the knot K.
Each example indicates a further counterexample to Equation (1) in the Berhhard-

Jablan Conjecture either by the knot K, or by a knot in one of the the sets BJSetK ,
BJSet

2

K = ∪K ′∈BJSetK
BJSetK ′, or BJSetiK = ∪K ′∈BJSet

i−1

K

BJSetK ′ for some i ≥ 3.

The first pair is K = K13n1669, which has weak Bernhard-Jablan unknotting
number 4, and K̃ = K14n23648, with unknotting number ≤ 2. Adjacent braid
representatives for these two knots are given by:

K = K13n1669 :{−2,−4,−1,−3,−4,−4,−2,−3, 7,−1,−2, 4,−1, 5, 3,−1,−1,−2, 1, 6, 1, 4, 3}

K̃ = K14n23648 :{−2,−4, 1,−3,−4,−4,−2,−3, 7,−1,−2, 4,−1, 5, 3,−1,−1,−2, 1, 6, 1, 4, 3}
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The second example is K = K13n1587, which has weak Bernhard-Jablan unknot-
ting number 3, and K̃ = 10113, with unknotting number 1. Their adjacent braid
representations are:

K13n1587 :{−4,−3,−3,−6, 4, 5,−4, 3,−6, 3,−2, 1, 3, 2, 5, 4, 1, 1, 6,−6,−5, 3}

10113 :{−4,−3,−3,−6, 4, 5,−4, 3,−6, 3,−2, 1, 3, 2, 5, 4, 1, 1, 6, 6,−5, 3}

Finally, the third pair gives the first example of an alternating knot for which
Equation (2) fails. The knots are K = K14a2539, which has weak Bernhard-Jablan

unknotting number 4, and K̃ = K14n1045, with unknotting number ≤ 2. Adjacent
braid representations are given by:

K14a2539 :{7, 3,−4, 1, 6, 7, 5, 6,−1, 5,−2,−7,−3, 4,−1, 2, 7,−6, 3, 7,

6,−2,−6,−1,−2,−7, 3,−4, 1, 7,−3, 7,−6,−7, 5, 1,−7,−1, 6}

K14n1045 :{7, 3,−4, 1, 6, 7, 5, 6,−1, 5,−2,−7,−3,−4,−1, 2, 7,−6, 3, 7,

6,−2,−6,−1,−2,−7, 3,−4, 1, 7,−3, 7,−6,−7, 5, 1,−7,−1, 6}

4. The future

With the failure of the Bernhard-Jablan Conjecture, there would seem to be no
natural remaining candidate for an algorithmic approach to computing unknotting
number. That is, there is no other ‘canonical’ finite collection of diagrams for a knot
in which to posit that an unknotting number minimizer ‘should’ be found. This
could be viewed as a blow to the theory, but we choose to take a different view.
For example, despite a massive amount of effort, none of the computable invariants
that can be tied to unknotting number (and there are many) have succeeded in
showing that any of the nine 10-crossing knots with unknown unknotting number,
namely 1011, 1047, 1051, 1054, 1061, 1076, 1077, 1079 and 10100, have unknotting number
3, although all nine can be shown to have weak Bernhard-Jablan unknotting number
equal to 3. With the examples we have found, it may be more reasonable now to
suppose that this failure to establish that u(K) = 3 for K in this list is in fact
because it should not be possible; perhaps some or all of these knots have unknotting
number 2, and we just have not yet found the projection(s) to demonstrate this. We
are heartened by the fact that the example we found to settle Conjecture 1.1 was
provided by a 20-crossing projection (although we should note that the braid that
our search program actually found had 37 crossings - it was possible, by hand, to
reduce it to the braid word we have provided here), and so it may even be the case
that a relatively small projection could provide the knot adjacency needed to show
that one or more of these 10-crossing knots have unknotting number 2.

There are almost certainly many more knots out there that provide a counterex-
ample to the Bernhard-Jablan conjecture. All of the code that we have developed as
part of this project to uncover unknotting numbers by random search is available at
the website

http://www.math.unl.edu/∼mbrittenham2/unknottingsearch/

and we invite anyone who is interested in searching for interesting knot adjacencies to
download and run this code. The code to implement random searches in SnapPy is
written in python, as is the code for SnapPy to build the databases of minimal crossing
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projections. SnapPy can natively identify any knot with 14 or fewer crossings, and
so this code is implemented to work up through that crossing limit. The code to
work with Knotscape provided at the website, which we used to check the database
computations, is written in Perl, and makes calls to the Knotscape program ‘knotfind’
to make its identifications.

Since this code was originally designed to find useful knot adjacencies, which would
then identify tighter bounds on unknown unknotting numbers, and there has been no
systematic work, other than this project, to compute the unknotting numbers of 13-
and 14-crossing knots generally (that we are aware of), further runs of this code are
likely to uncover new values of the unknotting numbers of these (as well as possibly
smaller) knots. We would be grateful to hear of any such new data that the reader
might discover as a consequence of running this code for themselves;

The failure of Conjecture 1.1 in general leads naturally to several still unresolved
questions. Is Conjecture 1.1 true for alternating knots? That is, does every minimal
alternating projection contain a crossing whose change will lower the unknotting
number of the underlying knot? McCoy [18] has shown that this is true for unknotting
number 1 alternating knots. (We note that the third example in Section 3 shows
an alternating knot for which Equation (2) fails to hold, but does not determine
whether Equation (1) holds for that knot.) In Theorem 1.3 we have shown that one
of four knots must provide a counterexample to Conjecture 1.1 (and in particular to
Equation (1)), but the question remains, which one? What is the smallest (in terms
of crossing number) counterexample to the Bernhard-Jablan Conjecture? Are there
infinitely many counterexamples?

5. Appendix

To make this paper as independent of external data sources as possible, we list,
for reference, the DT codes of all of the minimal crossing diagrams used to carry
out the computations above. This will allow the reader to verify for themselves that
crossing changes on these diagrams have the properties claimed in the paper. We do
not provide the code here that was used to produce these lists, or to show that they
are exhaustive; that would make this paper prohibitively long. This code is available
at the website listed above.

DT codes for the minimal diagrams, up to flype, of the knot K11n21:

[4, 8,−12, 2, 16,−6, 20, 18, 10, 22, 14] [4, 8, 12, 2,−14,−18, 6,−20,−10,−22,−16]
[4, 8, 12, 2,−16, 18, 6,−20, 22,−14,−10] [4, 8, 12, 2,−20, 18, 6,−10, 22,−14, 16]
[4, 8, 12, 2, 14,−18, 6,−20,−10,−22,−16] [4, 8, 12, 2, 16, 18, 6,−20, 22,−14, 10]
[4, 8, 12, 2, 18,−16, 6, 20,−22, 14,−10] [4, 8, 12, 2, 18,−20, 6,−10,−22, 14,−16]
[4, 8, 12, 2, 18, 14, 6,−20,−22, 10,−16] [4, 8, 12, 2, 18, 20, 6, 10,−22, 14,−16]
[4, 10,−14,−20, 2, 16,−18, 8,−22,−6,−12] [4, 10,−14,−20, 2, 16,−18, 8, 22,−6, 12]
[4, 10,−14,−20, 2, 16,−22, 8, 12,−6,−18] [4, 10,−14,−20, 2, 16,−8, 22, 12,−6,−18]
[4, 10,−14,−20, 2, 22,−18, 8,−12,−6, 16] [4, 10,−14, 18, 2, 16,−6, 22, 20, 8, 12]
[4, 10,−16,−20, 2, 22,−18,−8,−12,−6,−14] [4, 10, 12,−14, 2, 22,−18,−20,−6,−8,−16]
[4, 10, 14,−20, 2,−16,−22, 8,−12,−6,−18] [4, 10, 14,−20, 2,−16,−8, 22,−12,−6,−18]
[4, 10, 16,−20, 2, 22, 18,−8, 12,−6,−14] [4, 12,−18, 14, 20, 2, 22, 8, 10,−6, 16]

[4, 14, 10,−20, 22, 18, 2,−8, 6, 12,−16]
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DT codes for the minimal diagrams, up to flype, of K13n3370:

[4, 12,−22,−20,−18,−16, 2,−24,−10,−8,−26,−14,−6]
[6,−10, 12, 14,−18, 20, 26,−24,−22,−4, 2,−16,−8]
[6,−10, 12, 16,−18, 20, 26, 24,−22,−4, 2,−8, 14]
[6,−10, 12, 22,−18, 20, 26, 24,−8,−4, 2, 16, 14]
[6,−10, 12, 24,−18, 20, 26,−8,−22,−4, 2,−16, 14]
[6,−10, 12, 26,−18, 20,−8,−24,−22,−4, 2,−16,−14]
[6, 10, 18,−16, 4, 24, 22, 20,−26, 2, 14, 12,−8]
[6,−10, 18, 26, 20,−2, 24, 22, 8, 4, 16, 14, 12]
[6,−10, 20, 14,−18,−4, 26,−24,−22,−12, 2,−16,−8]
[6,−10, 20, 16,−18,−4, 26, 24,−22,−12, 2,−8, 14]
[6,−10, 20, 22,−18,−4, 26, 24,−8,−12, 2, 16, 14]
[6,−10, 20, 24,−18,−4, 26,−8,−22,−12, 2,−16, 14]
[6,−10, 20, 26,−18,−4,−8,−24,−22,−12, 2,−16,−14]
[6,−10, 22,−14,−2,−20,−8, 26, 24,−12, 4, 18, 16]
[6,−12, 22,−14,−2, 20,−8, 26, 24, 4, 10, 18, 16]
[6, 14, 20, 18,−24,−16, 4,−22,−26, 2,−12,−10,−8]
[6, 14, 20, 26, 18,−16, 4,−22,−24, 2,−12,−10, 8]
[6, 14, 20, 26,−24,−16, 4,−22,−8, 2,−12,−10, 18]
[6,−14, 22, 20, 18, 26,−4,−24, 10, 8, 2,−12,−16]
[6,−14,−22, 26, 20, 18,−4, 24, 12, 10, 8,−2, 16]
[6, 20, 12, 14,−18, 4, 26,−24,−22,−10, 2,−16,−8]
[6, 20, 12, 16,−18, 4, 26, 24,−22,−10, 2,−8, 14]
[6, 20, 12, 22,−18, 4, 26, 24,−8,−10, 2, 16, 14]

[6, 20, 12, 24,−18, 4, 26,−8,−22,−10, 2,−16, 14]

DT codes for the minimal diagrams, up to flype, of K12n288:

[4, 10, 12,−16, 2, 8,−18,−22,−6,−24,−14,−20] [4, 10, 12, 16, 2, 8,−18,−22, 6,−24,−14,−20]
[4, 10, 12,−16, 2, 8, 20,−6, 24, 22, 14, 18] [4, 10, 14,−12, 2, 20,−18, 22,−6, 8, 24, 16]
[4, 10, 14,−12, 2, 20,−18, 22, 6,−8, 24, 16] [4, 10,−14, 16, 2, 8, 20,−24, 22, 12, 18,−6]
[4, 10, 14,−16, 2, 8, 20,−24, 22, 12, 18,−6] [4, 10,−14, 18, 2, 8, 20,−24,−22, 12,−6,−16]
[4, 10, 14,−18, 2, 20, 6, 22, 12,−8, 24, 16] [4, 10, 14,−20, 2, 8,−18, 22,−6,−12, 24, 16]
[4, 10, 14, 20, 2, 8,−18, 22, 6,−12, 24, 16] [4, 10, 14,−20, 2, 18, 24,−22, 8, 12,−16,−6]
[4, 10, 14,−22, 2,−18, 8,−24,−20,−12,−16,−6] [4, 10,−16, 12, 2, 8,−20,−6,−24,−22,−14,−18]
[4, 10, 16, 12, 2, 8,−20, 6,−24,−22,−14,−18] [4, 10,−16, 14, 2, 8,−20, 24,−22,−12,−18,−6]
[4, 10, 16,−14, 2, 8,−20, 24,−22,−12,−18,−6] [4, 10, 16,−20, 2, 18, 24, 22, 8, 12,−6, 14]
[4, 10,−18,−12, 2, 16,−20,−8, 24,−22,−14,−6] [4, 10, 18,−12, 2, 16,−20, 8, 24,−22,−14,−6]
[4, 10, 18,−14, 2, 8,−20, 24, 22,−12,−6, 16] [4, 10, 18, 16, 2, 8,−20,−22, 24,−14,−12, 6]

[4, 10, 18,−20, 2, 22, 8,−6, 24,−14, 12, 16] [4, 10, 20,−16, 2, 18, 8,−22, 12, 24,−14,−6]

DT codes for the minimal diagrams, up to flype, of K12n491:

[6,−12, 20, 18, 24, 16,−4, 22, 8, 2, 14, 10] [6,−16, 18, 22, 2,−4, 24, 20,−10, 12, 8, 14]
[6, 16,−18, 22, 2,−4, 24, 20,−10, 12, 8, 14] [4, 10,−16,−20, 2,−18,−22,−8,−24,−14,−6,−12]
[6,−10, 12, 22, 16,−18, 24, 20,−2, 4, 8, 14] [6,−10, 12, 22, 16,−18, 24, 20, 2,−4, 8, 14]
[6, 10,−18, 22, 2, 16, 24, 20,−4, 12, 8, 14] [6,−10,−18, 22, 16,−4, 24, 20,−2, 12, 8, 14]

[6,−10, 18, 22, 16,−4, 24, 20, 2, 12, 8, 14]

DT codes for the minimal diagrams, up to flype, of K12n501:

[6,−10, 22, 24,−16, 18, 20,−2, 4, 14, 12, 8] [6,−10, 22, 24,−16, 18, 20, 2,−4, 14, 12, 8]
[6,−10, 22, 24, 16,−18,−20,−4, 2,−14,−12, 8] [6,−10, 22, 24, 16,−18,−20, 4,−2,−14,−12, 8]



A COUNTEREXAMPLE TO THE BERNHARD-JABLAN CONJECTURE 14

[6,−12, 20, 24, 18, 16,−4, 22, 10, 2, 14, 8] [4, 10,−16,−22, 2,−18,−20,−8,−24,−14,−12,−6]
[6, 10, 12,−18, 4, 2,−20,−22,−8,−24,−16,−14] [6, 10, 12, 18, 4, 2,−20,−22, 8,−24,−16,−14]
[6, 10, 12,−18, 4, 2, 20, 22, 24,−8, 16, 14] [6,−10, 12, 24, 16,−18, 22, 20,−2, 4, 14, 8]
[6,−10, 12, 24, 16,−18, 22, 20, 2,−4, 14, 8] [6,−10,−14, 24, 16,−20,−18, 22,−2,−12,−4, 8]
[6,−10, 14, 24, 16,−20,−18, 22, 2,−12,−4, 8] [6, 10,−16, 24, 2,−18,−20,−22,−4,−14,−12, 8]
[6, 10, 16, 24, 2,−18,−20,−22, 4,−14,−12, 8] [6,−10, 16, 24,−18,−4,−20,−22, 2,−14,−12, 8]

[6,−10,−18, 24, 16,−4, 20, 22,−2, 14, 12, 8] [6,−10, 18, 24, 16,−4, 20, 22, 2, 14, 12, 8]

References

[1] J. Bernhard, Unknotting numbers and minimal knot diagrams, J. Knot Theory Ramifications 3
(1994), 1-5 .

[2] S. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984) 469–
471.

[3] M. Borodzik and S. Friedl, The unknotting number and classical invariants, I, Algebr. Geom.
Topol. 15 (2015) 85-135.

[4] J. Cha and C. Livingston, KnotInfo: Table of Knot Invariants, http://www.indiana.edu/ knot-
info (accessed 5/11/2017).

[5] T. Cochran and W.B.R. Lickorish, Unknotting information from 4-manifolds, Trans. Amer.
Math. Soc. 297 (1986) 125-142.

[6] M. Culler, N. Dunfield, M. Goerner, and J. Weeks, SnapPy, a computer program for studying

the geometry and topology of 3-manifolds, http://snappy.computop.org .
[7] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math.

Soc. 2 (1989) 371-415.
[8] J. Hoste andM. Thistlethwaite, Knotscape, http://www.math.utk.edu/∼morwen/knotscape.html
[9] S. Jablan, Unknotting number and ∞-unknotting number of a knot, Filomat 12 (1998) 113-120.
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